The Community for Technology Leaders
Green Image
Issue No. 01 - January/February (2008 vol. 14)
ISSN: 1077-2626
pp: 13-24
Photon mapping places an enormous burden on the memory hierarchy. Rendering a 512 x 512 image of a simple scene can require more than 196 Gbytes of raw bandwidth to the photon map data structure. This bandwidth is a major obstacle to real-time photon mapping. This paper investigates two approaches for reducing the required bandwidth: 1) reordering the kNN searches and 2) cache conscious data structures. Using a Hilbert curve reordering, we demonstrate an experimental lower bound of 15 Mbytes of bandwidth for the same scene. Unfortunately, this improvement of four orders of magnitude requires a prohibitive amount of intermediate storage. We introduce two novel cost-effective algorithms that reduce the bandwidth by one order of magnitude. Scenes of different complexities are shown to exhibit similar reductions in bandwidth. We explain why the choice of data structure does not achieve similar reductions. We also examine the interaction of query reordering with two photon map acceleration techniques, importance sampling, and the irradiance cache. Query reordering exploits the additional coherence that arises from the use of importance sampling in scenes with glossy surfaces. Irradiance caching also benefits from query reordering, even when complex surface geometry reduces the effectiveness of the irradiance cache.
Bandwidth, Layout, Data structures, Lighting, Casting, Monte Carlo methods, Geometry, Hardware, Rendering (computer graphics), Acceleration,Graphics Hardware, Global Illumination, Photon Mapping, Importance Sampling, Irradiance Caching
"Reducing Photon-Mapping Bandwidth by Query Reordering", IEEE Transactions on Visualization & Computer Graphics, vol. 14, no. , pp. 13-24, January/February 2008, doi:10.1109/TVCG.2007.70413
89 ms
(Ver 3.3 (11022016))