The Community for Technology Leaders
Green Image
Issue No. 06 - November/December (2007 vol. 13)
ISSN: 1077-2626
pp: 1376-1383
Pipeline architectures provide a versatile and efficient mechanism for constructing visualizations, and they have been implemented in numerous libraries and applications over the past two decades. In addition to allowing developers and users to freely combine algorithms, visualization pipelines have proven to work well when streaming data and scale well on parallel distributed- memory computers. However, current pipeline visualization frameworks have a critical flaw: they are unable to manage time varying data. As data flows through the pipeline, each algorithm has access to only a single snapshot in time of the data. This prevents the implementation of algorithms that do any temporal processing such as particle tracing; plotting over time; or interpolation, fitting, or smoothing of time series data. As data acquisition technology improves, as simulation time-integration techniques become more complex, and as simulations save less frequently and regularly, the ability to analyze the time-behavior of data becomes more important. This paper describes a modification to the traditional pipeline architecture that allows it to accommodate temporal algorithms. Furthermore, the architecture allows temporal algorithms to be used in conjunction with algorithms expecting a single time snapshot, thus simplifying software design and allowing adoption into existing pipeline frameworks. Our architecture also continues to work well in parallel distributed-memory environments. We demonstrate our architecture by modifying the popular VTK framework and exposing the functionality to the ParaView application. We use this framework to apply time-dependent algorithms on large data with a parallel cluster computer and thereby exercise a functionality that previously did not exist.
data acquisition, data visualisation, parallel architectures,time dependent processing, parallel pipeline architecture, visualization pipelines, data streaming, parallel distributed-memory computers, time varying data, temporal processing, data acquisition technology, parallel distributed-memory environments, parallel cluster computer,Pipelines, Computer architecture, Data visualization, Application software, Concurrent computing, Analytical models, Software algorithms, Libraries, Distributed computing, Interpolation,data-parallel visualization pipeline, time-varying data
"Time Dependent Processing in a Parallel Pipeline Architecture", IEEE Transactions on Visualization & Computer Graphics, vol. 13, no. , pp. 1376-1383, November/December 2007, doi:10.1109/TVCG.2007.70600
101 ms
(Ver 3.3 (11022016))