The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—In this paper, we present a framework for simulating light transport in three-dimensional tissue with inhomogeneous scattering properties. Our approach employs a computational model to simulate light scattering in tissue through the finite element solution of the diffusion equation. Although our model handles both visible and nonvisible wavelengths, we especially focus on the interaction of near infrared (NIR) light with tissue. Since most human tissue is permeable to NIR light, tools to noninvasively image tumors, blood vasculature, and monitor blood oxygenation levels are being constructed. We apply this model to a numerical phantom to visually reproduce the images generated by these real-world tools. Therefore, in addition to enabling inverse design of detector instruments, our computational tools produce physically-accurate visualizations of subsurface structures.</p>
Volume rendering, near infrared, biological tissue, light scattering.

R. Crane, J. Adams, R. Machiraju, R. Lee and R. Sharp, "Physics-Based Subsurface Visualization of Human Tissue," in IEEE Transactions on Visualization & Computer Graphics, vol. 13, no. , pp. 620-629, 2007.
96 ms
(Ver 3.3 (11022016))