The Community for Technology Leaders
Green Image
Issue No. 04 - October-December (2002 vol. 8)
ISSN: 1077-2626
pp: 373-382
<p><b>Abstract</b>—Rendering geometrically detailed 3D models requires the transfer and processing of large amounts of triangle and vertex geometry data. Compressing the geometry bitstream can reduce bandwidth requirements and alleviate transmission bottlenecks. In this paper, we show vector quantization to be an effective compression technique for triangle mesh vertex data. We present predictive vector quantization methods using unstructured codebooks as well as a product code pyramid vector quantizer. The technique is compatible with most existing mesh connectivity encoding schemes and does not require the use of entropy coding. In addition to compression, our vector quantization scheme can be used for complexity reduction by accelerating the computation of linear vertex transformations. Consequently, an encoded set of vertices can be both decoded and transformed in approximately 60 percent of the time required by a conventional method without compression.</p>
Computer graphics, data compression, geometry compression, vector quantization.

P. H. Chou and T. H. Meng, "Vertex Data Compression through Vector Quantization," in IEEE Transactions on Visualization & Computer Graphics, vol. 8, no. , pp. 373-382, 2002.
82 ms
(Ver 3.3 (11022016))