The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—Many real-world polygonal surfaces contain topological singularities that represent a challenge for processes such as simplification, compression, and smoothing. We present an algorithm that removes singularities from nonmanifold sets of polygons to create manifold (optionally oriented) polygonal surfaces. We identify singular vertices and edges, <it>multiply</it> singular vertices, and <it>cut</it> through singular edges. In an optional <it>stitching</it> operation, we maintain the surface as a manifold while joining boundary edges. We present two different edge stitching strategies, called <it>pinching</it> and <it>snapping</it>. Our algorithm manipulates the surface topology and ignores physical coordinates. Except for the optional stitching, the algorithm has a linear complexity and requires no floating point operations. In addition to introducing new algorithms, we expose the complexity (and pitfalls) associated with stitching. Finally, several real-world examples are studied.</p>
Polygonal surface, topological singularities, manifold, cutting, stitching.

A. Guéziec, G. Taubin, B. Horn and F. Lazarus, "Cutting and Stitching: Converting Sets of Polygons to Manifold Surfaces," in IEEE Transactions on Visualization & Computer Graphics, vol. 7, no. , pp. 136-151, 2001.
89 ms
(Ver 3.3 (11022016))