The Community for Technology Leaders
Green Image
ISSN: 1045-9219
Wu Jigang , Tianjin Polytechnic University, Tianjin
Thambipillai Srikanthan , Nanyang Technological University, Singapore
Guiyuan Jiang , Tianjin University, Tianjin
Kai Wang , Peking University, Beijing
Reducing the interconnection length of VLSI arrays leads to less capacitance, power dissipation and dynamic communication cost between the processing elements (PEs). This paper develops efficient algorithms for constructing tightly-coupled subarrays from the mesh-connected VLSI arrays with faulty PEs. For a given size r ⋅ s of the target (logical) array, the proposed algorithm searches and reroutes a physical r × s subarray that has the least number of faults, resulting in an approximate target array, which is subsequently extended to the desired target array. Experimental results show that over 65% redundant interconnects can be reduced for a 64 × 64 target array on the 512 × 512 host array with no more than 1% faults. In addition, we propose a recursive divide-and-conquer algorithm for constructing the maximum target array (MTA). The lower bound of the total interconnection length of the MTA has been established. Experimental results show that the proposed algorithm is capable of reducing the long interconnects by over 33% for the MTA derived from the 512 × 512 host array with no more than 1% faults. Moreover, the proposed total interconnection length of target array is close to the lower bound for the cases with relatively fewer number of faults.
fault tolerance, Reconfiguration, algorithm

G. Jiang, T. Srikanthan, W. Jigang and K. Wang, "Constructing Sub-Arrays with Short Interconnects from Degradable VLSI Arrays," in IEEE Transactions on Parallel & Distributed Systems.
100 ms
(Ver 3.3 (11022016))