The Community for Technology Leaders
Green Image
Issue No. 05 - May (2014 vol. 25)
ISSN: 1045-9219
pp: 1223-1232
Jian Li , Department of Electrical & Computer Engineering,  Michigan State University, East Lansing,
Yun Li , SPD Department, Microsoft , Redmond,
Jian Ren , Department of Electrical & Computer Engineering,  Michigan State University, East Lansing,
Jie Wu , Department of Computer & Information Sciences, Temple University, Philadelphia,
Message authentication is one of the most effective ways to thwart unauthorized and corrupted messages from being forwarded in wireless sensor networks (WSNs). For this reason, many message authentication schemes have been developed, based on either symmetric-key cryptosystems or public-key cryptosystems. Most of them, however, have the limitations of high computational and communication overhead in addition to lack of scalability and resilience to node compromise attacks. To address these issues, a polynomial-based scheme was recently introduced. However, this scheme and its extensions all have the weakness of a built-in threshold determined by the degree of the polynomial: when the number of messages transmitted is larger than this threshold, the adversary can fully recover the polynomial. In this paper, we propose a scalable authentication scheme based on elliptic curve cryptography (ECC). While enabling intermediate nodes authentication, our proposed scheme allows any node to transmit an unlimited number of messages without suffering the threshold problem. In addition, our scheme can also provide message source privacy. Both theoretical analysis and simulation results demonstrate that our proposed scheme is more efficient than the polynomial-based approach in terms of computational and communication overhead under comparable security levels while providing message source privacy.
decentralized control, Hop-by-hop authentication, symmetric-key cryptosystem, public-key cryptosystem, source privacy, simulation, wireless sensor networks (WSNs), distributed algorithm

J. Li, Y. Li, J. Ren and J. Wu, "Hop-by-Hop Message Authenticationand Source Privacy in WirelessSensor Networks," in IEEE Transactions on Parallel & Distributed Systems, vol. 25, no. 5, pp. 1223-1232, 2014.
177 ms
(Ver 3.3 (11022016))