The Community for Technology Leaders
Green Image
Issue No. 12 - Dec. (2013 vol. 24)
ISSN: 1045-9219
pp: 2492-2502
Wei Wei , The College of William and Mary, Williamsburg
Fengyuan Xu , The College of William and Mary, Williamsburg
Chiu C. Tan , Temple University, Philadelphia
Qun Li , The College of William and Mary, Williamsburg
Distributed systems without trusted identities are particularly vulnerable to sybil attacks, where an adversary creates multiple bogus identities to compromise the running of the system. This paper presents SybilDefender, a sybil defense mechanism that leverages the network topologies to defend against sybil attacks in social networks. Based on performing a limited number of random walks within the social graphs, SybilDefender is efficient and scalable to large social networks. Our experiments on two 3,000,000 node real-world social topologies show that SybilDefender outperforms the state of the art by more than 10 times in both accuracy and running time. SybilDefender can effectively identify the sybil nodes and detect the sybil community around a sybil node, even when the number of sybil nodes introduced by each attack edge is close to the theoretically detectable lower bound. Besides, we propose two approaches to limiting the number of attack edges in online social networks. The survey results of our Facebook application show that the assumption made by previous work that all the relationships in social networks are trusted does not apply to online social networks, and it is feasible to limit the number of attack edges in online social networks by relationship rating.
Social network services, Image edge detection, Detection algorithms, Algorithm design and analysis, Network topology
Wei Wei, Fengyuan Xu, Chiu C. Tan, Qun Li, "SybilDefender: A Defense Mechanism for Sybil Attacks in Large Social Networks", IEEE Transactions on Parallel & Distributed Systems, vol. 24, no. , pp. 2492-2502, Dec. 2013, doi:10.1109/TPDS.2013.9
163 ms
(Ver 3.3 (11022016))