The Community for Technology Leaders
Green Image
Issue No. 10 - Oct. (2011 vol. 22)
ISSN: 1045-9219
pp: 1766-1774
Subhasri Duttagupta , Tata Consulting Services, Mumbai
Krithi Ramamritham , Indian Institute of Technology Bombay, Mumbai
Purushottam Kulkarni , Indian Institute of Technology Bombay, Mumbai
We examine the problem of tracking dynamic boundaries occurring in natural phenomena using a network of range sensors. Two main challenges of the boundary tracking problem are accurate boundary estimation from noisy observations and continuous tracking of the boundary. We propose Dynamic Boundary Tracking (DBTR), an algorithm that combines the spatial estimation and temporal estimation techniques. The regression-based spatial estimation technique determines discrete points on the boundary and estimates a confidence band around the entire boundary. In addition, a Kalman Filter-based temporal estimation technique tracks changes in the boundary and aperiodically updates the spatial estimate to meet accuracy requirements. DBTR provides a low energy solution compared to similar periodic update techniques to track boundaries without requiring prior knowledge about the dynamics. Experimental results demonstrate the effectiveness of our algorithm; estimated confidence bands indicate a loss of coverage of less than 2 to 5 percent for a variety of boundaries with different spatial characteristics.
Sensor networks, Kalman filtering, nonparametric statistics, distributed applications.

S. Duttagupta, K. Ramamritham and P. Kulkarni, "Tracking Dynamic Boundaries Using Sensor Network," in IEEE Transactions on Parallel & Distributed Systems, vol. 22, no. , pp. 1766-1774, 2011.
83 ms
(Ver 3.3 (11022016))