The Community for Technology Leaders
Green Image
Issue No. 07 - July (2011 vol. 22)
ISSN: 1045-9219
pp: 1222-1229
Chao Gao , Beijing University of Technology, Beijing
Jiming Liu , Hong Kong Baptist University, Hong Kong and Beijing University of Technology, Beijing
Ning Zhong , Maebashi Institute of Technology, Maebashi-City, and Beijing University of Technology, Beijing
Many communication systems, e.g., internet, can be modeled as complex networks. For such networks, immunization strategies are necessary for preventing malicious attacks or viruses being percolated from a node to its neighboring nodes following their connectivities. In recent years, various immunization strategies have been proposed and demonstrated, most of which rest on the assumptions that the strategies can be executed in a centralized manner and/or that the complex network at hand is reasonably stable (its topology will not change overtime). In other words, it would be difficult to apply them in a decentralized network environment, as often found in the real world. In this paper, we propose a decentralized and scalable immunization strategy based on a self-organized computing approach called autonomy-oriented computing (AOC) [1], [2]. In this strategy, autonomous behavior-based entities are deployed in a decentralized network, and are capable of collectively finding those nodes with high degrees of conductivities (i.e., those that can readily spread viruses). Through experiments involving both synthetic and real-world networks, we demonstrate that this strategy can effectively and efficiently locate highly-connected nodes in decentralized complex network environments of various topologies, and it is also scalable in handling large-scale decentralized networks. We have compared our strategy with some of the well-known strategies, including acquaintance and covering strategies on both synthetic and real-world networks.
Immunization strategy, complex networks, distributed search, autonomy-oriented computing, self-organization, positive feedback, scalable computing.

J. Liu, C. Gao and N. Zhong, "Network Immunization with Distributed Autonomy-Oriented Entities," in IEEE Transactions on Parallel & Distributed Systems, vol. 22, no. , pp. 1222-1229, 2010.
99 ms
(Ver 3.3 (11022016))