The Community for Technology Leaders
Green Image
Issue No. 12 - December (2009 vol. 20)
ISSN: 1045-9219
pp: 1714-1725
Xiuduan Fang , Google Inc., Mountain View
Malathi Veeraraghavan , University of Virginia, Charlottesville
In prior work, we proposed a hybrid architecture that complements the connectionless Internet with a high-speed, dynamically shared circuit-switched network for file-transfer applications. "Small” files are directed to the connectionless network while for "large” files, a high-speed circuit setup is attempted. If the attempt is unsuccessful (because all circuits are already in use), the application will fall back to using the connectionless path. This paper addresses the question of how to select appropriate values for operational parameters in this hybrid architecture. Specifically, we study the questions of what sized files to direct to the circuit-switched network and how much bandwidth to allocate per file transfer. To answer these questions, we construct a model of this hybrid architecture by combining the Erlang-B call blocking model with TCP delay models. Our model captures a combination of utilization and delay considerations in the selection of minimum file size above which transfers should be directed to the circuit-switched network. The optimal per-call circuit rate and the optimal minimum file size are determined to maximize the benefits of using the circuit network, which is quantified with an average-delay-reduction metric.
Network architecture, circuit-switching networks, packet-switching networks, network applications.

X. Fang and M. Veeraraghavan, "A Hybrid Network Architecture for File Transfers," in IEEE Transactions on Parallel & Distributed Systems, vol. 20, no. , pp. 1714-1725, 2009.
79 ms
(Ver 3.3 (11022016))