The Community for Technology Leaders
Green Image
Issue No. 07 - July (2009 vol. 20)
ISSN: 1045-9219
pp: 1059-1072
Saikat Chakrabarti , University of Kentucky , Lexington
Santosh Chandrasekhar , University of Kentucky, Lexington
Mukesh Singhal , University of Kentucky, Lexington
Kenneth L. Calvert , University of Kentcuky, Lexington
Aggregate signatures can be a crucial building block for providing scalable authentication of a large number of users in several applications like building efficient certificate chains, authenticating distributed content management systems, and securing path vector routing protocols. Aggregate signatures aim to prevent resources (signature and storage elements, and computation) from growing linearly in the number of signers participating in a network protocol. In this paper, we present an efficient and scalable quasi-aggregate signature scheme, {\rm CLFSR}- {\rm QA}, based on third-order linear feedback shift register (cubic LFSR) sequences that can be instantiated using both XTR and GH public key cryptosystems. In the proposed {\rm CLFSR}-{\rm QA} construction, signers sign messages sequentially; however, the verfier need not know the order in which messages were signed. The proposed scheme offers constant length signatures, fast signing, aggregation, and verification operations at each node, and requires the least storage elements (public keys needed to verify the signature), compared to any other aggregate signature scheme. To the best of our knowledge, {\rm CLFSR}- {\rm QA} is the first aggregate signature scheme to be constructed using LFSR sequences. We believe that the {\rm CLFSR}- {\rm QA} signature scheme can be catalytic in improving the processing latency as well as reducing space requirements in building secure, large-scale distributed network protocols. We perform extensive theoretical analysis including correctness and security of {\rm CLFSR}- {\rm QA} and also present a performance (computation and communication costs, storage overhead) comparison of the proposed scheme with well-known traditional constructions.
Digital signature, aggregate signature, compressed certificate chain, distributed content management, secure path-vector protocols, LFSR sequences, LFSR-based public key cryptosystems.

K. L. Calvert, S. Chakrabarti, S. Chandrasekhar and M. Singhal, "An Efficient and Scalable Quasi-Aggregate Signature Scheme Based on LFSR Sequences," in IEEE Transactions on Parallel & Distributed Systems, vol. 20, no. , pp. 1059-1072, 2008.
93 ms
(Ver 3.3 (11022016))