The Community for Technology Leaders
Green Image
Issue No. 07 - July (2009 vol. 20)
ISSN: 1045-9219
pp: 953-967
Nirmalya Roy , University of Texas at Austin, Austin
Sajal K. Das , University of Texas at Arlington, Arlington
The Grid is an integrated infrastructure that can play the dual roles of a coordinated resource consumer as well as a donator in distributed computing environments. The enormous growth in the use of mobile and embedded devices in ubiquitous computing environment and their interaction with human beings produces a huge amount of data that need to be processed efficiently anytime anywhere. However, such devices often have limited resources in terms of CPU, storage, battery power, and communication bandwidth. Thus, there is a need to transfer ubiquitous computing application services to more powerful computational resources. In this paper, we investigate the use of the Grid as a candidate for provisioning computational services to applications in ubiquitous computing environments. In particular, we present a competitive model that describes the possible interaction between the competing resources in the Grid Infrastructure as service providers and ubiquitous applications as subscribers. The competition takes place in terms of quality of service (QoS) and cost offered by different Grid Service Providers (GSPs). We also investigate the job allocation of different GSPs by exploiting the noncooperativeness among the strategies. We present the equilibrium behavior of our model facing global competition under stochastic demand and estimate guaranteed QoS assurance level by efficiently satisfying the requirement of ubiquitous application. We have also performed extensive experiments over Distributed Parallel Computing Cluster (DPCC) and studied overall job execution performance of different GSPs under a wide range of QoS parameters using different strategies. Our model and performance evaluation results can serve as a valuable reference for designing appropriate strategies in a practical grid environment.
Ubiquitous computing, grid computing, pervasive devices, price elasticity, stochastic demand, Nash-Equilibrium, Mahalanobis distance, game theory.

N. Roy and S. K. Das, "Enhancing Availability of Grid Computational Services to Ubiquitous Computing Applications," in IEEE Transactions on Parallel & Distributed Systems, vol. 20, no. , pp. 953-967, 2009.
81 ms
(Ver 3.3 (11022016))