The Community for Technology Leaders
Green Image
Issue No. 01 - January (2009 vol. 20)
ISSN: 1045-9219
pp: 1-12
Lee Kee Goh , Institute for Infocomm Research, Singapore
Bharadwaj Veeravalli , National University of Singapore (CNDS), Singapore
Sivakumar Viswanathan , Institute for Infocomm Research, Singapore
In this paper, we present two heuristic energy-aware scheduling algorithms (EGMS and EGMSIV) for scheduling task precedence graphs in an embedded multiprocessor system having processing elements with dynamic voltage scaling capabilities. Unlike most energy-aware scheduling algorithms that consider task ordering and voltage scaling separately from task mapping, our algorithms consider them in an integrated way. EGMS uses the concept of energy gradient to select tasks to be mapped onto new processors and voltage levels. EGM-SIV extends EGMS by introducing intra-task voltage scaling using a Linear Programming (LP) formulation to further reduce the energy consumption. Through rigorous simulations, we compare the performance of our proposed algorithms with a few approaches presented in the literature. The results demonstrate that our algorithms are capable of obtaining energy-efficient schedules using less optimization time. On the average, our algorithms produce schedules which consume 10% less energy with more than 47% reduction in optimization time when compared to a few approaches presented in the literature. In particular, our algorithms perform better in generating energy-efficient schedules for larger task graphs. Our results show a reduction of up to 57% in energy consumption for larger task graphs compared to other approaches.
Energy-aware scheduling, real-time scheduling, power management, heterogeneous multiprocessor scheduling, embedded systems

S. Viswanathan, L. K. Goh and B. Veeravalli, "Design of Fast and Efficient Energy-Aware Gradient-Based Scheduling Algorithms Heterogeneous Embedded Multiprocessor Systems," in IEEE Transactions on Parallel & Distributed Systems, vol. 20, no. , pp. 1-12, 2008.
95 ms
(Ver 3.3 (11022016))