Issue No. 03 - March (2003 vol. 14)

ISSN: 1045-9219

pp: 213-221

Biing-Feng Wang , IEEE Computer Society

ABSTRACT

<p><b>Abstract</b>—A Cartesian product network is obtained by applying the cross operation on two graphs. In this paper, we study the problem of constructing the maximum number of edge-disjoint spanning trees (abbreviated to EDSTs) in Cartesian product networks. Let <tmath> G=(V_G, E_G) </tmath> be a graph having <tmath> n_1 </tmath> EDSTs and <tmath> F=(V_F, E_F) </tmath> be a graph having <tmath> n_2 </tmath> EDSTs. Two methods are proposed for constructing EDSTs in the Cartesian product of <tmath> G </tmath> and <tmath> F </tmath>, denoted by <tmath> G\times F </tmath>. The graph <tmath> G </tmath> has <tmath> t_1=|E_G|-n_1(|V_G|-1) </tmath> more edges than that are necessary for constructing <tmath> n_1 </tmath> EDSTs in it, and the graph <tmath> F </tmath> has <tmath> t_2=|E_F|-n_2(|V_F|-1) </tmath> more edges than that are necessary for constructing <tmath> n_2 </tmath> EDSTs in it. By assuming that <tmath> t_1\ge n_1 </tmath> and <tmath> t_2 \ge n_2 </tmath>, our first construction shows that <tmath> n_1+ n_2 </tmath> EDSTs can be constructed in <tmath> G \times F </tmath>. Our second construction does not need any assumption and it constructs <tmath> n_1 + n_2-1 </tmath> EDSTs in <tmath> G \times F </tmath>. By applying the proposed methods, it is easy to construct the maximum numbers of EDSTs in many important Cartesian product networks, such as hypercubes, tori, generalized hypercubes, mesh connected trees, and hyper Petersen networks.</p>

INDEX TERMS

Cartesian product networks, edge-disjoint trees, spanning trees, embedding, fault-tolerance, interconnection networks.

CITATION

T. Hung, B. Wang and S. Ku, "Constructing Edge-Disjoint Spanning Trees in Product Networks," in

*IEEE Transactions on Parallel & Distributed Systems*, vol. 14, no. , pp. 213-221, 2003.

doi:10.1109/TPDS.2003.1189580

CITATIONS