The Community for Technology Leaders
Green Image
Issue No. 12 - December (2000 vol. 11)
ISSN: 1045-9219
pp: 1217-1231
<p><b>Abstract</b>—In conventional video-on-demand systems, video data are stored in a video server for delivery to multiple receivers over a communications network. The video server's hardware limits the maximum storage capacity as well as the maximum number of video sessions that can concurrently be delivered. Clearly, these limits will eventually be exceeded by the growing need for better video quality and larger user population. This paper studies a parallel video server architecture that exploits server parallelism to achieve incremental scalability. First, unlike data partition and replication, the architecture employs data striping at the server level to achieve fine-grain load balancing across multiple servers. Second, a client-pull service model is employed to eliminate the need for interserver synchronization. Third, an admission-scheduling algorithm is proposed to further control the instantaneous load at each server so that linear scalability can be achieved. This paper analyzes the performance of the architecture by deriving bounds for server service delay, client buffer requirement, prefetch delay, and scheduling delay. These performance metrics and design tradeoffs are further evaluated using numerical examples. Our results show that the proposed parallel video server architecture can be linearly scaled up to more concurrent users simply by adding more servers and redistributing the video data among the servers.</p>
Parallel video server, striping, performance analysis, admission scheduling, scalable, client pull.

J. Y. Lee and P. Wong, "Performance Analysis of a Pull-Based Parallel Video Server," in IEEE Transactions on Parallel & Distributed Systems, vol. 11, no. , pp. 1217-1231, 2000.
86 ms
(Ver 3.3 (11022016))