Issue No. 03 - March (1999 vol. 10)

ISSN: 1045-9219

pp: 297-315

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/71.755830

ABSTRACT

<p><b>Abstract</b>—In this paper, we present a framework for synthesizing I/O efficient out-of-core programs for block recursive algorithms, such as the fast Fourier transform (FFT) and block matrix transposition algorithms. Our framework uses an algebraic representation which is based on tensor products and other matrix operations. The programs are optimized for the <it>striped</it> Vitter and Shriver's two-level memory model in which data can be distributed using various <tmath>$cyclic(B)$</tmath> distributions in contrast to the normally used <it>physical track</it> distribution <tmath>$cyclic(B_d)$</tmath>, where <tmath>$B_d$</tmath> is the physical disk block size. We first introduce <it>tensor bases</it> to capture the semantics of block-cyclic data distributions of out-of-core data and also data access patterns to out-of-core data. We then present program generation techniques for tensor products and matrix transposition. We accurately represent the number of parallel I/O operations required for the synthesized programs for tensor products and matrix transposition as a function of tensor bases and data distributions. We introduce an algorithm to determine the data distribution which optimizes the performance of the synthesized programs. Further, we formalize the procedure of synthesizing efficient out-of-core programs for tensor product formulas with various block-cyclic distributions as a dynamic programming problem. We demonstrate the effectiveness of our approach through several examples. We show that the choice of an appropriate data distribution can reduce the number of passes to access out-of-core data by as large as eight times for a tensor product and the dynamic programming approach can largely reduce the number of passes to access out-of-core data for the overall tensor product formulas.</p>

INDEX TERMS

Parallel I/O, program synthesis, data distribution, tensor product, block recursive algorithm, fast Fourier transform.

CITATION

Sandeep K.S. Gupta, Zhiyong Li, John H. Reif, "Synthesizing Efficient Out-of-Core Programs for Block Recursive Algorithms Using Block-Cyclic Data Distributions",

*IEEE Transactions on Parallel & Distributed Systems*, vol. 10, no. , pp. 297-315, March 1999, doi:10.1109/71.755830