The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—Search of discrete spaces is important in combinatorial optimization. Such problems arise in artificial intelligence, computer vision, operations research, and other areas. For realistic problems, the search spaces to be processed are usually huge, necessitating long computation times, pruning heuristics, or massively parallel processing. We present an algorithm that reduces the computation time for graph matching by employing both branch-and-bound pruning of the search tree and massively-parallel search of the as-yet-unpruned portions of the space. Most research on parallel search has assumed that a multiple-instruction-stream/multiple-data-stream (MIMD) parallel computer is available. Since massively parallel single-instruction-stream/multiple-data-stream (SIMD) computers are much less expensive than MIMD systems with equal numbers of processors, the question arises as to whether SIMD systems can efficiently handle state-space search problems. We demonstrate that the answer is yes, and in particular, that graph matching has a natural and efficient implementation on SIMD machines.</p>
Graph, matching, parallel algorithm, SIMD, branch-and-bound, search, MasPar, combinatorial explosion, forward checking, load balancing.

R. Allen, D. Yasuda, L. Shapiro, S. Tanimoto and L. Cinque, "A Parallel Algorithm for Graph Matching and Its MasPar Implementation," in IEEE Transactions on Parallel & Distributed Systems, vol. 8, no. , pp. 490-501, 1997.
88 ms
(Ver 3.3 (11022016))