The Community for Technology Leaders
RSS Icon
Issue No.01 - Jan. (2013 vol.62)
pp: 200
P. K. Jha , Dept. of Comput. Sci., St. Cloud State Univ., St. Cloud, MN, USA
A major result relating to the Hamiltonian decomposition presented by Anantha, Bose, and AlBdaiwi [1], is actually a special case of a more general result already known in the literature.
Reflective binary codes, Multiprocessor interconnection, toroidal networks, Hamiltonian cycles
P. K. Jha, "Comments on "Multiple-Radix Gray Codes in Lee Metric"", IEEE Transactions on Computers, vol.62, no. 1, pp. 200, Jan. 2013, doi:10.1109/TC.2012.195
[1] M. Anantha, B. Bose, and B.F. Al Bdaiwi, “Mixed-radix Gray codes in Lee metric,” IEEE Trans. Computers, vol. 56, no. 10, pp. 1297-1307, Oct. 2007.
[2] B.. Alspach, J.-C. Bermond, and D. Sotteau, “Decompositions into cycles I: Hamiltonian decompositions,” Cycles and Rays, G. Hahn, G. Sabidussi and R.E. Woodrow, eds., Dordrecht/Boston/London: Kluwer Academic Publishers, 1990.
[3] W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition, New York: John Wiley & Sons, 2000.
34 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool