The Community for Technology Leaders
Green Image
Issue No. 06 - June (2011 vol. 60)
ISSN: 0018-9340
pp: 865-878
Bing-Hong Liu , National Kaohsiung University, Kaohsiung
Min-Lun Chen , National Hsing Hua University, Hsinchu
Ming-Jer Tsai , National Hsing Hua University, Hsinchu
In the tracking system, a better prediction model can significantly reduce power consumption in a wireless sensor network because fewer redundant sensors will be activated to keep monitoring the object. The Gauss-Markov mobility model is one of the best mobility models to describe object trajectory because it can capture the correlation of object velocity in time. Traditionally, the Gauss-Markov parameters are estimated using an autocorrelation technique or a recursive least-squares estimation technique; either of these techniques, however, requires a large amount of historical movement information of the mobile object, which is not suitable for tracking objects in a wireless sensor network because they demand a considerable amount of message communication overhead between wireless sensors which are usually battery powered. In this paper, we develop a Gauss-Markov parameter estimator for wireless sensor networks (GMPE_MLH) using a maximum likelihood technique. The GMPE_MLH model estimates the Gauss-Markov parameters with few requirements in terms of message communication overhead. Simulations demonstrate that the GMPE_MLH model generates negligible differences between the actual and estimated values of the Gauss-Markov parameters and provides comparable prediction of the mobile object's location to the Gauss-Markov parameter estimators using an autocorrelation technique or a recursive least-squares estimation.
Wireless sensor network, Gauss-Markov mobility model, Gauss-Markov parameter estimation, object tracking, message-efficient location prediction.
Bing-Hong Liu, Min-Lun Chen, Ming-Jer Tsai, "Message-Efficient Location Prediction for Mobile Objects in Wireless Sensor Networks Using a Maximum Likelihood Technique", IEEE Transactions on Computers, vol. 60, no. , pp. 865-878, June 2011, doi:10.1109/TC.2010.217
98 ms
(Ver 3.3 (11022016))