The Community for Technology Leaders
Green Image
This paper is a contribution to the theory of true random number generators based on sampling phase jitter in oscillator rings. After discussing several misconceptions and apparently insurmountable obstacles, we propose a general model which, under mild assumptions, will generate provably random bits with some tolerance to adversarial manipulation and running in the megabit-per-second range. A key idea throughout the paper is the fill rate, which measures the fraction of the time domain in which the analog output signal is arguably random. Our study shows that an exponential increase in the number of oscillators is required to obtain a constant factor improvement in the fill rate. Yet, we overcome this problem by introducing a postprocessing step which consists of an application of an appropriate resilient function. These allow the designer to extract random samples only from a signal with only moderate fill rate and, therefore, many fewer oscillators than in other designs. Last, we develop fault-attack models and we employ the properties of resilient functions to withstand such attacks. All of our analysis is based on rigorous methods, enabling us to develop a framework in which we accurately quantify the performance and the degree of resilience of the design.
True (and pseudo) random number generators, resilient functions, cryptography.

B. Sunar, W. J. Martin and D. R. Stinson, "A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks," in IEEE Transactions on Computers, vol. 56, no. , pp. 109-119, 2007.
95 ms
(Ver 3.3 (11022016))