The Community for Technology Leaders
Green Image
Recent advances in the electronic device manufacturing technology have opened many research opportunities in pervasive computing. Among the emerging design platforms, "electronic textiles” (or e-textiles) make possible a wide variety of novel applications, ranging from consumer electronics to aerospace devices. Due to the harsh environment of e-textile components and battery size limitations, low-power and redundancy techniques are critical for obtaining successful e-textile applications. In this paper, we consider a platform which consists of dedicated components for e-textiles, including computational modules, dedicated transmission lines, and thin-film batteries on fiber substrates. As a theoretical contribution, we address the issue of the energy-aware routing for e-textile platforms and propose an efficient algorithm to solve it. Furthermore, we derive an analytical upper bound for determining the maximum number of achievable jobs over all possible e-textile routing frameworks. From a practical standpoint, for the Advanced Encryption Standard (AES) cipher, the routing technique we propose achieves close to or more than 75 percent of this theoretical upper bound. Moreover, compared to the non-energy-aware counterpart, the new routing technique increases the number of encryption jobs by one order of magnitude.
Electronic textile, energy-aware routing, pervasive computing.

R. Marculescu and J. Kao, "On Optimization of E-Textile Systems Using Redundancy and Energy-Aware Routing," in IEEE Transactions on Computers, vol. 55, no. , pp. 745-756, 2006.
90 ms
(Ver 3.3 (11022016))