The Community for Technology Leaders
Green Image
<p>A lower bound to the number of AND gates used in parallel multipliers for <tmath>$GF(2/supm/)$</tmath>, under the condition that time complexity be minimum, is determined. In particular, the exact minimum number of AND gates for Primitive Normal Bases and Optimal Normal Bases of Type II multipliers is evaluated. This result indirectly suggests that space complexity is essentially a quadratic function of <tmath>$m$</tmath> when time complexity is kept minimum.</p>
finite fields, parallel multiplier, optimal normal basis
M. Leone, M. Elia, "On the Inherent Space Complexity of Fast Parallel Multipliers for GF(2/supm/)", IEEE Transactions on Computers, vol. 51, no. , pp. 346-351, March 2002, doi:10.1109/12.990131
472 ms
(Ver 3.3 (11022016))