The Community for Technology Leaders
Green Image
Issue No. 06 - June (1999 vol. 48)
ISSN: 0018-9340
pp: 640-645
<p><b>Abstract</b>—A recent paper describes the use of Svoboda's binary counter in the construction of fast parallel multipliers. The resulting approach was shown to be faster than the conventional Dadda multiplier when the wordlength <tmath>$N$</tmath> was small. Unfortunately, the growth in the number of gates of that method was <tmath>$O(N^3)$</tmath> and the speed was <tmath>$O(N)$</tmath>. In this paper, Batcher's bitonic sorting network and other efficient networks replace the Svoboda counter. The asymptotic growth rate in gates of these new methods is <tmath>$O(N^2 \log^2 N )$</tmath>, and the speed is <tmath>$O(\log^2 N)$</tmath>.</p>
Parallel multiplier, partial product reduction, Dadda's counter, 4:2 compressor, bitonic sorting network.
Paul D. Fiore, "Parallel Multiplication Using Fast Sorting Networks", IEEE Transactions on Computers, vol. 48, no. , pp. 640-645, June 1999, doi:10.1109/12.773800
113 ms
(Ver 3.3 (11022016))