The Community for Technology Leaders
Green Image
Issue No. 02 - February (1998 vol. 47)
ISSN: 0018-9340
pp: 171-177
<p><b>Abstract</b>—Boolean equations are important tools in digital logic. Previous algorithms for solving Boolean equations are based on the Boolean algebra of disjoint SOP forms. In this paper, we develop a new Boolean algebra with more efficient Boolean operation algorithms, called the reduced ordered SOP (ROSOP) forms, which are canonical representations. ROSOPs are closely related to the well-known OBDD data structure. The results here also show the algebraic structure of OBDDs.</p>
Boolean algebra, operations, functions, equations, and decision diagrams, SOP forms, equation solving algorithms.
Carl McCrosky, Yuke Wang, "Solving Boolean Equations Using ROSOP Forms", IEEE Transactions on Computers, vol. 47, no. , pp. 171-177, February 1998, doi:10.1109/12.663763
48 ms
(Ver 3.3 (11022016))