The Community for Technology Leaders
Green Image
<p><b>Abstract</b>—We show that a <it>k</it>×<it>n</it> diagonal mesh is isomorphic to a <tmath>${\textstyle{{n+k} \over 2}}\times {\textstyle{{n+k} \over 2}}-{\textstyle{{n-k} \over 2}}\times {\textstyle{{n-k} \over 2}}$</tmath> twisted toroidal mesh, i.e., a network similar to a standard <tmath>${\textstyle{{n+k} \over 2}}\times {\textstyle{{n+k} \over 2}}$</tmath> toroidal mesh, but with opposite handed twists of <tmath>${\textstyle{{n-k} \over 2}}$</tmath> in the two directions, which results in a loss of <tmath>$\left( {{\textstyle{{n-k} \over 2}}} \right)^2$</tmath> nodes.</p>
Interconnection networks, grid networks, mesh-connected topologies, diagonal mesh, toroidal mesh.
Barak A. Pearlmutter, "Doing the Twist: Diagonal Meshes Are Isomorphic to Twisted Toroidal Meshes", IEEE Transactions on Computers, vol. 45, no. , pp. 766-767, June 1996, doi:10.1109/12.506434
88 ms
(Ver 3.3 (11022016))