The Community for Technology Leaders
Green Image
<p>A polynomial time algorithm for solving the combinatorial problem that underlies the reconfiguration issues in the m1/2-track-m-spare model, for any arbitrary m, is discussed. The following combinatorial problem is solved: Given a set of points in a two-dimensional grid, find a set of noninteracting straight lines such that every line starts at a point and connects to one of the boundaries of the grid, there are no more than m lines overlapping in any row or column of the grid, and there are no near-miss situations. The time complexity of the algorithm is shown to be O(m mod F mod /sup 2/), where mod F is the number of faulty processors.</p>
polynomial time algorithm; reconfiguring multiple-track models; combinatorial problem; m1/2-track-m-spare model; two-dimensional grid; noninteracting straight lines; time complexity; faulty processors; computational complexity; fault tolerant computing; parallel algorithms; parallel architectures; reconfigurable architectures.

T. Kailth, V. Roychowdhury and T. Varvarigou, "A Polynomial Time Algorithm for Reconfiguring Multiple-Track Models," in IEEE Transactions on Computers, vol. 42, no. , pp. 385-395, 1993.
90 ms
(Ver 3.3 (11022016))