The Community for Technology Leaders
Green Image
ABSTRACT
<p>A universal lower-bound technique for the size and other implementation characteristics of an arbitrary Boolean function as a decision tree and as a two-level AND/OR circuit is derived. The technique is based on the power spectrum coefficients of the n dimensional Fourier transform of the function. The bounds vary from constant to exponential and are tight in many cases. Several examples are presented.</p>
INDEX TERMS
spectral lower bound technique; decision trees; two-level AND/OR circuits; arbitrary Boolean function; power spectrum coefficients; n dimensional Fourier transform; Boolean functions; Fourier transforms; logic circuits; trees (mathematics).
CITATION
Y. Brandman, J. Hennessy, A. Orlitsky, "A Spectral Lower Bound Technique for the Size of Decision Trees and Two-Level AND/OR Circuits", IEEE Transactions on Computers, vol. 39, no. , pp. 282-287, February 1990, doi:10.1109/12.45216
81 ms
(Ver )