The Community for Technology Leaders
Green Image
<p>The problem of embedding a graph in the plane with the minimum number of edge crossings arises in some circuit layout problems. It has been known to be NP-hard in general. Recently, in the area of book embedding, this problem was shown to be NP-hard even when the vertices are placed on a straight line l. The authors show that the problem remains NP-hard even if, in addition to these constraints, the positions of the vertices on l are predetermined.</p>
crossing minimisation; linear embeddings of graphs; circuit layout problems; NP-hard; circuit layout CAD; computational complexity; graph theory; minimisation.
T. Kashiwabara, T. Fujisawa, K. Nakajima, S. Masuda, "Crossing Minimization in Linear Embeddings of Graphs", IEEE Transactions on Computers, vol. 39, no. , pp. 124-127, January 1990, doi:10.1109/12.46286
86 ms
(Ver 3.3 (11022016))