Issue No. 10 - October (1987 vol. 36)

ISSN: 0018-9340

pp: 1255-1258

H.C. Shyu , Department of Electrical Engineering, University of Southern California

ABSTRACT

A quadratic-polynomial Fermat residue number system (QFNS) can be used to compute the complex multiplications needed to perform a DFT. The advantage of such a QFNS is that complex multiplication can be accomplished with only two integer multiplications. In this paper, it is shown that a new set of numbers of the form Tn = 22n + 1 can be used in place of the set of Fermat numbers. This new quadratic residue number system can be used also to compute a complex multiplication with only two integer multiplications.

INDEX TERMS

VLSI, Chinese Remainder Theorem, direct sum, dynamic range, modulo, quadratic-polynomial residue number system

CITATION

H.C. Shyu, I.S. Reed, T.K. Truong, "A Complex Integer Multiplier Using the Quadratic-Polynomial Residue Number System with Numbers of Form 2<sup>2n</sup>+ 1",

*IEEE Transactions on Computers*, vol. 36, no. , pp. 1255-1258, October 1987, doi:10.1109/TC.1987.1676868