The Community for Technology Leaders
Green Image
Issue No. 06 - June (1984 vol. 33)
ISSN: 0018-9340
pp: 486-492
A.T. Dahbura , Department of Electrical Engineering and Computer Science, G. W. C. Whiting School of Engineering, The Johns Hopkins University
Consider a system composed of n independent processors, each of which tests a subset of the others. It is assumed that at most tp of these processors are permanently faulty and that the outcome of a test is reliable if and only if the processor which performed the test is fault free. Such a system is said to be tp-diagnosable if, given any complete collection of test results, the set of faulty processors can be uniquely identified. In this paper, it is shown that tp-diagnosable systems, due to their robust interconnection structure, possess heretofore unknown graph theoretic properties relative to vertex cover sets and maximum matchings. An 0(n2.5) algorithm is given which exploits these properties to identify the set of faulty processors in a tp-diagnosable system. The algorithm is shown to be correct, complete, not based on any conjecture, and superior to any other known fault identification algorithm for the general class of tp-diagnosable systems.
vertex cover sets, Connection assignment, diagnosis, fault tolerance, matchings, permanent fault, PMC models, self-diagnosable systems, syndrome

G. Masson and A. Dahbura, "An 0(n<sup>2.5</sup>) Fault Identification Algorithm for Diagnosable Systems," in IEEE Transactions on Computers, vol. 33, no. , pp. 486-492, 1984.
94 ms
(Ver 3.3 (11022016))