The Community for Technology Leaders
Green Image
Issue No. 10 - October (1975 vol. 24)
ISSN: 0018-9340
pp: 979-983
R. Mizoguchi , Faculty of Engineering Science, Osaka university
In this correspondence, an approach to unsupervised pattern classifiers is discussed. The classifiers discussed here have the ability of obtaining the consistent estimates of unknown statistics of input patterns without knowing the a priori probability of each category's occurrence where the input patterns are of a mixture distribution. An analysis is made about their asymptotic behavior in order to show that the classifiers converge to the Bayes' minmum error classifier. Also, some results of a computer simulation on learning processes are shown.
Bayes' classification, consistent estimates, mixture distribution, pattern recognition, two category problem, unsupervised learning.
R. Mizoguchi, M. Shimura, "An Approach to Unsupervised Learning Classification", IEEE Transactions on Computers, vol. 24, no. , pp. 979-983, October 1975, doi:10.1109/T-C.1975.224104
103 ms
(Ver 3.3 (11022016))