Issue No. 01 - January (1975 vol. 24)

ISSN: 0018-9340

pp: 102-106

F.M. Brown , Department of Electrical Engineering, University of Kentucky

ABSTRACT

Given a combinational output function f and an input constraint f = 0, there is a set G( f, f) of output functions equivalent to f with respect to f. A function belongs to G( f, f), that is, provided its evaluations agree with those of f for all argument combinations satisfying the constraint f = 0. We define the constrained-input problem as that of generating G( f, f), given f and f. A general solution for this problem is developed. Applications to the "don't-care" problem and to translator synthesis are discussed.

INDEX TERMS

Boolean algebra, Boolean equations, functional decomposition, input constraints.

CITATION

F.M. Brown, "The Constrained-Input Problem",

*IEEE Transactions on Computers*, vol. 24, no. , pp. 102-106, January 1975, doi:10.1109/T-C.1975.224089