The Community for Technology Leaders
Green Image
The partial-fractions expansion of a function F(s)/(s-a)<sup>m</sup>, m > 1, involves the computation of m coefficients, namely (1 /i!)(d<sup>i</sup>F(a)/ds<sup>i</sup>), 0 = i = m-1. Wehrhahn [1] and Karni [3] have provided a method for computing these coefficients algebraically. A new approach is taken here which involves approximating a multiple pole by neighboring simple poles. The theory deve
Discrete Fourier transform (DFT), fast Fourier transform (FFT), multiple pole, partial-fractions expansion.
S.S. Godbole, "An Algorithm for the Machine Computation of Partial-Fractions Expansion of Functions Having Multiple Poles", IEEE Transactions on Computers, vol. 20, no. , pp. 1147-1152, October 1971, doi:10.1109/T-C.1971.223099
90 ms
(Ver 3.3 (11022016))