The Community for Technology Leaders
Green Image
Issue No. 09 - September (1970 vol. 19)
ISSN: 0018-9340
pp: 850-851
K.W. Henderson , Stanford Linear Accelerator Center1 Stanford University
The matrix form of the Walsh functions as defined in the above-mentioned short note [1] can be generated by the modulo-2 product of two generating matrices: the natural binary code, and the transpose of the bit-reversed form of the first. As a result, the coefficients of the Walsh transform occur in bit-reversed order. By simply reordering the Walsh functions themselves to correspond to generation by the product of two such code matrices, neither or both in bit-reversed form, the Walsh coefficients occur in their natural order.
Code matrix, Walsh-Fourier transform, Walsh functions, Walsh matrix.

K. Henderson, "Comment on "Computation of the Fast Walsh-Fourier Transform"," in IEEE Transactions on Computers, vol. 19, no. , pp. 850-851, 1970.
92 ms
(Ver 3.3 (11022016))