The Community for Technology Leaders
RSS Icon
Issue No.03 - May-June (2012 vol.9)
pp: 899-910
Michael A. Mooney , Oregon Health & Science University, Portland
Beth Wilmot , Oregon Clinical and Translational Research Institute, Portland
Shannon K. McWeeney , Oregon Health & Science University, Portland
Enormous data collection efforts and improvements in technology have made large genome-wide association studies a promising approach for better understanding the genetics of common diseases. Still, the knowledge gained from these studies may be extended even further by testing the hypothesis that genetic susceptibility is due to the combined effect of multiple variants or interactions between variants. Here, we explore and evaluate the use of a genetic algorithm to discover groups of SNPs (of size 2, 3, or 4) that are jointly associated with bipolar disorder. The algorithm is guided by the structure of a gene interaction network, and is able to find groups of SNPs that are strongly associated with the disease, while performing far fewer statistical tests than other methods.
Biology and genetics, evolutionary computing and genetic algorithms, graphs and networks.
Michael A. Mooney, Beth Wilmot, The Bipolar Genome Study, Shannon K. McWeeney, "The GA and the GWAS: Using Genetic Algorithms to Search for Multilocus Associations", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.9, no. 3, pp. 899-910, May-June 2012, doi:10.1109/TCBB.2011.145
[1] L.A. Hindorff, H.A. Junkins, J.P. Mehta, T.A. Manolio, "A Catalog of Published Genome-Wide Association Studies," www.genome. govgwastudies, Apr. 2011.
[2] R. Nunkesser, T. Bernholt, H. Schwender, K. Ickstadt, and I. Wegener, "Detecting High-Order Interactions of Single Nucleotide Polymorphisms Using Genetic Programming," Bioinformatics, vol. 23, no. 24, pp. 3280-3288, Dec. 2007.
[3] J. Gayán, A. González-Pérez, F. Bermudo, M.E. Sáez, J.L. Royo, A. Quintas, J.J. Galan, F.J. Morón, R. Ramirez-Lorca, L.M. Real, and A. Ruiz, "A Method for Detecting Epistasis in Genome-Wide Studies Using Case-Control Multi-Locus Association Analysis," BMC Genomics, vol. 9, article 360, July 2008.
[4] X. Zhang, S. Huang, F. Zou, and W. Wang, "TEAM: Efficient Two-Locus Epistasis Tests in Human Genome-Wide Association Study," Bioinformatics, vol. 26, no. 12, pp. i217-i227, June 2010.
[5] J.H. Moore and B.C. White, "Genome-Wide Genetic Analysis Using Genetic Programming: The Critical Need for Expert Knowledge," Genetic Programming Theory and Practice IV, R. Riolo, T. Soule, B. Worzel, eds., pp. 11-28, Springer, 2007.
[6] I. Ruczinski, C. Kooperberg, and M.L. LeBlanc, "Exploring Interactions in High-Dimensional Genomic Data: An Overview of Logic Regression, with Applications," J. Multivariate Analysis, vol. 90, no. 1, pp. 178-195, July 2004.
[7] C.B. Congdon, C.F. Sing, and S.L. Reilly, "Genetic Algorithms for Identifying Combinations of Genes and Other Risk Factors Associated with Coronary Artery Disease," Proc. Workshop Artificial Intelligence and the Genome, pp. 107-117, Aug. 1993.
[8] O. Carlborg, L. Andersson, and B. Kinghorn, "The Use of a Genetic Algorithm for Simultaneous Mapping of Multiple Interacting Quantitative Trait Loci," Genetics, vol. 155, no. 4, pp. 2003-2010, Aug. 2000.
[9] S.K. Musani, D. Shriner, N. Liu, R. Feng, C.S. Coffey, N. Yi, H.K. Tiwari, and D.B. Allison, "Detection of Gene x Gene Interactions in Genome-Wide Association Studies of Human Population Data," Human Heredity, vol. 63, no. 2, pp. 67-84, 2007.
[10] J.H. Moore, F.W. Asselbergs, and S.M. Williams, "Bioinformatics Challenges for Genome-Wide Association Studies," Bioinformatics, vol. 26, no. 4, pp. 445-455, 2010.
[11] J.H. Holland, Adaptation in Natural and Artificial Systems, second ed. MIT Press, 1992.
[12] S. Forrest, "Genetic Algorithms: Principles of Natural Selection Applied to Computation," Science, vol. 261, no. 5123, pp. 872-878, Aug. 1993.
[13] K.F. Man, K.S. Tang, and S. Kwong, "Genetic Algorithms: Concepts and Applications [in Engineering Design]," IEEE Trans. Industrial Electronics, vol. 43, no. 5, pp. 519-534, Oct. 1996.
[14] F.H. van Batenburg, A.P. Gultyaev, and C.W. Pleij, "An APL-Programmed Genetic Algorithm for the Prediction of RNA Secondary Structure," J. Theoretical Biology, vol. 174, no. 3, pp. 269-280, 1995.
[15] E.N. Smith, D.L. Koller, C. Panganiban, S. Szelinger, P. Zhang, J.A. Badner, T.B. Barrett, W.H. Berrettini, C.S. Bloss, W. Byerley, W. Coryell, H.J. Edenberg, T. Foroud, E.S. Gershon, T.A. Greenwood, Y. Guo, M. Hipolito, B.J. Keating, W.B. Lawson, C. Liu, P.B. Mahon, M.G. McInnis, F.J. McMahon, R. McKinney, S.S. Murray, C.M. Nievergelt, J.I. Nurnberger Jr., E.A. Nwulia, J.B. Potash, J. Rice, T.G. Schulze, W.A. Scheftner, P.D. Shilling, P.P. Zandi, S. Zöllner, D.W. Craig, N.J. Schork, and J.R. Kelsoe, "Genome-Wide Association of Bipolar Disorder Suggests an Enrichment of Replicable Associations in Regions near Genes," PLoS Genetics, vol. 7, no. 6:e1002134, June 2011.
[16] B. Carvalho, H. Bengtsson, T.P. Speed, and R.A. Irizarry, "Exploration, Normalization, and Genotype Calls of High-Density Oligonucleotide SNP Array Data," Biostatistics, vol. 8, no. 2, pp. 485-499, Apr. 2007.
[17] M. Emily, T. Mailund, J. Hein, L. Schauser, and M.H. Schierup, "Using Biological Networks to Search for Interacting Loci in Genome-Wide Association Studies," European J. Human Genetics, vol. 17, no. 10, pp. 1231-1240, Oct. 2009.
[18] L.J. Jensen, M. Kuhn, M. Stark, S. Chaffron, C. Creevey, J. Muller, T. Doerks, P. Julien, A. Roth, M. Simonovic, P. Bork, and C. von Mering, "STRING 8-a Global View on Proteins and Their Functional Interactions in 630 Organisms," Nucleic Acids Research, vol. 37, no. database issue, pp. D412-D416, Jan. 2009.
[19] T.J.P. Hubbard, B.L. Aken, S. Ayling, B. Ballester, K. Beal, E. Bragin, S. Brent, Y. Chen, P. Clapham, L. Clarke, G. Coates, S. Fairley, S. Fitzgerald, J. Fernandez-Banet, L. Gordon, S. Gräf, S. Haider, M. Hammond, R. Holland, K. Howe, A. Jenkinson, N. Johnson, A. Kähäri, D. Keefe, S. Keenan, R. Kinsella, F. Kokocinski, E. Kulesha, D. Lawson, I. Longden, K. Megy, P. Meidl, B. Overduin, A. Parker, B. Pritchard, D. Rios, M. Schuster, G. Slater, D. Smedley, W. Spooner, G. Spudich, S. Trevanion, A. Vilella, J. Vogel, S. White, S. Wilder, A. Zadissa, E. Birney, F. Cunningham, V. Curwen, R. Durbin, X.M. Fernandez-Suarez, J. Herrero, A. Kasprzyk, G. Proctor, J. Smith, S. Searle, and P. Flicek, "Ensembl 2009," Nucleic Acids Research, vol. 37, no. database issue, pp. D690-D697, 2009.
[20] G.R. Abecasis, S.S. Cherny, W.O. Cookson, and L.R. Cardon, "Merlin-Rapid Analysis of Dense Genetic Maps Using Sparse Gene Flow Trees," Nature Genetics, vol. 30, no. 1, pp. 97-101, Jan. 2002.
[21] S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M.A.R. Ferreira, D. Bender, J. Maller, P. Sklar, P.I.W. de Bakker, M.J. Daly, and P.C. Sham, "PLINK: A Toolset for Whole-Genome Association and Population-Based Linkage Analysis," Am. J. Human Genetics, vol. 81, no. 3, pp. 559-575, Sept. 2007.
[22] H. Jeong, S.P. Mason, A.L. Barabási, and Z.N. Oltvai, "Lethality and Centrality in Protein Networks," Nature, vol. 411, no. 6833, pp. 41-42, May 2001.
[23] S. Horvath, B. Zhang, M. Carlson, K.V. Lu, S. Zhu, R.M. Felciano, M.F. Laurance, W. Zhao, S. Qi, Z. Chen, Y. Lee, A.C. Scheck, L.M. Liau, H. Wu, D.H. Geschwind, P.G. Febbo, H.I. Kornblum, T.F. Cloughesy, S.F. Nelson, and P.S. Mischel, "Analysis of Oncogenic Signaling Networks in Glioblastoma Identifies ASPM as a Molecular Target," Proc. Nat'l Academy Sciences USA, vol. 103, no. 46, pp. 17402-17407, Nov. 2006.
[24] E. Lander and L. Kruglyak, "Genetic Dissection of Complex Traits: Guidelines for Interpreting and Reporting Linkage Results," Nature Genetics, vol. 11, no. 3, pp. 241-247, Nov. 1995.
[25] N. Risch and K. Merikangas, "The Future of Genetic Studies of Complex Human Diseases," Science, vol. 273, no. 5281, pp. 1516-1517, Sept. 1996.
[26] J. Hoh and J. Ott, "Mathematical Multi-Locus Approaches to Localizing Complex Human Trait Genes," Nature Rev. Genetics, vol. 4, no. 9, pp. 701-709, Sept. 2003.
[27] J. Becker, J.R. Wendland, B. Haenisch, M.M. Nöthen, J. Schumacher, "A Systematic eQTL Study of Cis-Trans Epistasis in 210 HapMap Individuals," European J. Human Genetics, Aug. 2011.
[28] A.E. Baum, N. Akula, M. Cabanero, I. Cardona, W. Corona, B. Klemens, T.G. Schulze, S. Cichon, M. Rietschel, M.M. Nöthen, A. Georgi, J. Schumacher, M. Schwarz, R. Abou Jamra, S. Höfels, P. Propping, J. Satagopan, S.D. Detera-Wadleigh, J. Hardy, F.J. McMahon, "A Genome-Wide Association Study Implicates Diacylglycerol Kinase eta (DGKH) and Several Other Genes in the Etiology of Bipolar Disorder," Molecular Psychiatry, vol. 13, no. 2, pp. 197-207, Feb. 2008.
3 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool