The Community for Technology Leaders
Green Image
Issue No. 02 - March/April (2012 vol. 9)
ISSN: 1545-5963
pp: 408-420
S. Mimaroglu , Dept. of Comput. Eng., Bahcesehir Univ., Istanbul, Turkey
E. Aksehirli , Dept. of Comput. Eng., Bahcesehir Univ., Istanbul, Turkey
Clustering has a long and rich history in a variety of scientific fields. Finding natural groupings of a data set is a hard task as attested by hundreds of clustering algorithms in the literature. Each clustering technique makes some assumptions about the underlying data set. If the assumptions hold, good clusterings can be expected. It is hard, in some cases impossible, to satisfy all the assumptions. Therefore, it is beneficial to apply different clustering methods on the same data set, or the same method with varying input parameters or both. We propose a novel method, DICLENS, which combines a set of clusterings into a final clustering having better overall quality. Our method produces the final clustering automatically and does not take any input parameters, a feature missing in many existing algorithms. Extensive experimental studies on real, artificial, and gene expression data sets demonstrate that DICLENS produces very good quality clusterings in a short amount of time. DICLENS implementation runs on standard personal computers by being scalable, and by consuming very little memory and CPU.
Clustering algorithms, Gene expression, Clustering methods, Partitioning algorithms, Bioinformatics, Computational biology, Software algorithms,gene expressions., Clustering, combining multiple clusterings, cluster ensembles, consensus clustering, evidence accumulation, minimum spanning tree
S. Mimaroglu, E. Aksehirli, "DICLENS: Divisive Clustering Ensemble with Automatic Cluster Number", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. , pp. 408-420, March/April 2012, doi:10.1109/TCBB.2011.129
192 ms
(Ver 3.3 (11022016))