The Community for Technology Leaders
Green Image
Issue No. 02 - March/April (2012 vol. 9)
ISSN: 1545-5963
pp: 358-371
K. Kentzoglanakis , Div. of Math. Biol., MRC Nat. Inst. of Med. Res., London, UK
M. Poole , Sch. of Comput., Univ. of Portsmouth, Portsmouth, UK
In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.
Recurrent neural networks, Biological system modeling, Gene expression, Mathematical model, Computer architecture, Regulators,degree distribution., Gene regulatory networks, network inference, recurrent neural networks, swarm intelligence, particle swarm optimization, ant colony optimization
K. Kentzoglanakis, M. Poole, "A Swarm Intelligence Framework for Reconstructing Gene Networks: Searching for Biologically Plausible Architectures", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 9, no. , pp. 358-371, March/April 2012, doi:10.1109/TCBB.2011.87
210 ms
(Ver 3.1 (10032016))