The Community for Technology Leaders
RSS Icon
Issue No.06 - November/December (2011 vol.8)
pp: 1568-1579
Jinhua Sheng , Indiana University, Indianapolis
Hong-Wen Deng , Tulane University, New Orleans
Vince D. Calhoun , The Mind Research Network, New Mexico
Yu-Ping Wang , Tulane University, New Orleans
DNA microarray gene expression and microarray-based comparative genomic hybridization (aCGH) have been widely used for biomedical discovery. Because of the large number of genes and the complex nature of biological networks, various analysis methods have been proposed. One such method is "gene shaving,” a procedure which identifies subsets of the genes with coherent expression patterns and large variation across samples. Since combining genomic information from multiple sources can improve classification and prediction of diseases, in this paper we proposed a new method, "ICA gene shaving” (ICA, independent component analysis), for jointly analyzing gene expression and copy number data. First we used ICA to analyze joint measurements, gene expression and copy number, of a biological system and project the data onto statistically independent biological processes. Next, we used these results to identify patterns of variation in the data and then applied an iterative shaving method. We investigated the properties of our proposed method by analyzing both simulated and real data. We demonstrated that the robustness of our method to noise using simulated data. Using breast cancer data, we showed that our method is superior to the Generalized Singular Value Decomposition (GSVD) gene shaving method for identifying genes associated with breast cancer.
Clustering technique, comparative genomic hybridization (CGH), copy number variation (CNV), generalized singular value decomposition (GSVD), gene expression, gene shaving, independent component analysis (ICA).
Jinhua Sheng, Hong-Wen Deng, Vince D. Calhoun, Yu-Ping Wang, "Integrated Analysis of Gene Expression and Copy Number Data on Gene Shaving Using Independent Component Analysis", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.8, no. 6, pp. 1568-1579, November/December 2011, doi:10.1109/TCBB.2011.71
[1] Int'l Human Genome Sequencing Consortium, “Finishing the Euchromatic Sequence of the Human Genome,” Nature, vol. 431, pp. 931-945, Oct. 2004.
[2] D.J. Lockhart, H. Dong, M.C. Byrne, M.T. Follettie, M.V. Gallo, M.S. Chee, M. Mittmann, C. Wang, M. Kobayashi, H. Horton, and E.L. Brown, “Expression Monitoring by Hybridization to High-Density Oligonucleotide Arrays,” Nature Biotechnology, vol. 14, pp. 1675-1680, Dec. 1996.
[3] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown, “Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray,” Science, vol. 270, pp. 467-470, Oct. 1995.
[4] G.B. Bezerra, G.M.A. Cançado, M. Menossi, L.N. de Castro, and F.J. Von Zuben, “Recent Advances in Gene Expression Data Clustering: A Case Study with Comparative Results,” Genetics and Molecular Research, vol. 4, pp. 514-524, 2005.
[5] J. Chen and Y.-P. Wang, “A Statistical Model-Based Approach for the Identification of DNA Copy Number Changes in Array CGH Data Sets,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 6, no. 4, pp. 529-541, Oct.-Dec. 2009.
[6] S.L. Pomeroy, P. Tamayo, M. Gaasenbeek, L.M. Sturla, M. Angelo, M.E. McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D. Zagzag, J.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S. Lander, and T.R. Golub, “Prediction of Central Nervous System Embryonal Tumor Outcome Based on Gene Expression,” Nature, vol. 41, pp. 436-442, 2002.
[7] O.P. Kallioniemi, A. Kallioniemi, J. Piper, J. Isola, F.M. Waldman, J.W. Gray, and D. Pinkel, “Optimizing Comparative Genomic Hybridization for Analysis of DNA Sequence Copy Number Changes in Solid Tumors,” Genes Chromosomes Cancer, vol. 10, pp. 231-243, 1994.
[8] A. Kallioniemi, “CGH Microarrays and Cancer,” Current Opinion in Biotechnology, vol. 19, pp. 36-40, 2008.
[9] M. Shinawi, S.W. Cheung, “The Array CGH and Its Clinical Applications,” Drug Discovery Today, vol. 13, pp. 760-770, 2008.
[10] M.R. Speicher and N.P. Carter, “The New Cytogenetics: Blurring the Boundaries with Molecular Biology,” Nature Reviews Genetics, vol. 6, pp. 782-792, 2005.
[11] H. Lee, S.W. Kong, and P.J. Park, “Integrative Analysis Reveals the Direct and Indirect Interactions between DNA Copy Number Aberrations and Gene Expression Changes,” Bioinformatics, vol. 24, pp. 889-896, 2008.
[12] R.X. Menezes, M. Boetzer, M. Sieswerda, G.B. Ommen, and J.M. Boer, “Integrated Analysis of DNA Copy Number and Gene Expression Microarray Data Using Gene Sets,” BMC Bioinformatics, vol. 10, pp. 203-217, 2009.
[13] M. Schäfer, H. Schwender, S. Merk, C. Haferlach, K. Ickstadt, and M. Dugas, “Integrated Analysis of Copy Number Alterations and Gene Expression: A Bivariate Assessment of Equally Directed Abnormalities,” Bioinformatics, vol. 25, pp. 3228-3235, 2009.
[14] C. Soneson, H. Lilljebjörn, T. Fioretos, and M. Fontes, “Integrative Analysis of Gene Expression and Copy Number Alterations Using Canonical Correlation Analysis,” BMC Bioinformatics, vol. 11, pp. 191-211, 2010.
[15] E. Hyman, P. Kauraniemi, S. Hautaniemi, M. Wolf, S. Mousses, E. Rozenblum, M. Ringneár, G. Sauter, O. Monni, A. Elkahloun, O.P. Kallioniemi, and A. Kallioniemi, “Impact of DNA Amplification on Gene Expression Patterns in Breast Cancer,” Cancer Research, vol. 62, pp. 6240-6245, 2002.
[16] J.R. Pollack, T. Sørlie, C.M. Perou, C.A. Rees, S.S. Jeffrey, P.E. Lonning, R. Tibshirani, D. Botstein, A.L. Børresen-Dale, and P.O. Brown, “Microarray Analysis Reveals a Major Direct Role of DNA Copy Number Alteration in the Transcriptional Program of Human Breast Tumors,” Proc. Nat'l Academy of Sciences USA, vol. 99, pp. 12963-12968, 2002.
[17] A.J. Aguirre, C. Brennan, G. Bailey, R. Sinha, B. Feng, C. Leo, Y. Zhang, J. Zhang, J.D. Gans, N. Bardeesy, C. Cauwels, C. Cordon-Cardo, M.S. Redston, R.A. DePinho, and L. Chin, “High-Resolution Characterization of the Pancreatic Adenocarcinoma Genome,” Proc. Nat'l Academy of Sciences USA, vol. 101, pp. 9067-9072, 2004.
[18] D. Tsafrir, M. Bacolod, Z. Selvanayagam, I. Tsafrir, J. Shia, Z. Zeng, H. Liu, C. Krier, R.F. Stengel, F. Barany, W.L. Gerald, P.B. Paty, E. Domany, and D.A. Notterman, “Relationship of Gene Expression and Chromosomal Abnormalities in Colorectal Cancer,” Cancer Research, vol. 66, pp. 2129-2137, 2006.
[19] J.L. Phillips, S.W. Hayward, Y. Wang, J. Vasselli, C. Pavlovich, H. Padilla-Nash, J.R. Pezullo, B.M. Ghadimi, G.D. Grossfeld, A. Rivera, W.M. Linehan, G.R. Cunha, and T. Ried, “The Consequences of Chromosomal Aneuploidy on Gene Expression Profiles in a Cell Line Model for Prostate Carcinogenesis,” Cancer Research, vol. 61, pp. 8143-8149, 2001.
[20] G. Tonon, K.K. Wong, G. Maulik, C. Brennan, B. Feng, Y. Zhang, D.B. Khatry, A. Protopopov, M.J. You, A.J. Aguirre, E.S. Martin, Z. Yang, H. Ji, L. Chin, and R.A. DePinho, “High-Resolution Genomic Profiles of Human Lung Cancer,” Proc. Nat'l Academy of Sciences USA, vol. 102, pp. 9625-9630, 2005.
[21] R. Mao, X. Wang, E.L. Spitznagel, L.P. Frelin, J.C. Ting, H. Ding, J.W. Kim, I. Ruczinski, T.J. Downey, and J. Pevsner, “Primary and Secondary Transcriptional Effects in the Developing Human Down Syndrome Brain and Heart,” Genome Biology, vol. 6, pp. R107.1-R107.20, 2005.
[22] K.J. Bussey, K. Chin, S. Lababidi, M. Reimers, W.C. Reinhold, W.L. Kuo, F. Gwadry, Ajay, H. Kouros-Mehr, J. Fridlyand, A. Jain, C. Collins, S. Nishizuka, G. Tonon, A. Roschke, K. Gehlhaus, I. Kirsch, D.A. Scudiero, J.W. Gray, and J.N. Weinstein, “Integration Data on DNA Copy Number with Gene Expression Levels and Drug Sensitivities in the NCI-60 Cell Line Panel,” Molecular Cancer Therapeutics, vol. 5, pp. 853-867, 2006.
[23] W.N. van Wieringen and M.A. van de Wiel, “Nonparametric Testing for DNA Copy Number Induced Differential mRNA Gene Expression,” Biometrics, vol. 65, pp. 19-29, 2009.
[24] K. Chin, S.D. Vries, J. Fridlyand, P.T. Spellman, R. Roydasgupta, W.-L. Kuo, A. Lapuk, R.M. Neve, Z. Qian, T. Ryder, F. Chen, H. Feiler, T. Tokuyasu, C. Kingsley, S. Dairkee, Z. Meng, K. Chew, D. Pinkel, A. Jain, B.M. Ljung, L. Esserman, D.G. Albertson, F.M. Waldman, and J.W. Gray, “Genomic and Transcriptional Aberrations Linked to Breast Cancer Pathophysiologies,” Cancer Cell, vol. 10, pp. 529-41, 2006.
[25] H.M. Horlings, C. Lai, D.S.A. Nuyten, H. Halfwerk, P. Kristel, E. Beers, S.A. Joosse, C. Klijn, P.M. Nederlof, M.J.T. Reinders, L.F.A. Wessels, and M.J. Vijver, “Integration of DNA Copy Number Alterations and Prognostic Gene Expression Signatures in Breast Cancer Patients,” Clinical Cancer Research, vol. 16, pp. 651-663, 2010.
[26] O. Alter, P.O. Brown, and D. Botstein, “Singular Value Decomposition for Genome-Wide Expression Data Processing and Modeling,” Proc. Nat'l Academy of Sciences USA, vol. 97, pp. 10101-10106, Aug. 2000.
[27] T. Hastie, R. Tibshirani, M.B. Eisen, A. Alizadeh, R. Levy, L. Staudt, W.C. Chan, D. Botstein, and P. Brown, “`Gene Shaving' as a Method for Identifying Distinct Sets of Genes with Similar Expression Patterns,” Genome Biology, vol. 1, no. 3, pp. 1-20, 2000.
[28] J.A. Berger, S. Hautaniemi, S.K. Mitra, and J. Astola, “Jointly Analyzing Genes Expression and Copy Number Data in Breast Cancer Using Data Reduction models,” IEEE/ACM Trans. Computational Biology and Bioinformatics, vol. 3, no. 1, pp. 2-16, Jan.-Mar. 2006.
[29] V. Calhoun, J. Liu, and T. Adali, “A Review of Group ICA for fMRI Data and ICA for Joint Inference of Imaging, Genetic, and ERP Data,” NeuroImage, vol. 45, pp. S163-S172, 2009.
[30] V.D. Calhoun, T. Adali, G.D. Pearlson, and K.A. Kiehl, “Neuronal Chronometry of Target Detection Fusion of Hemodynamic and Event-Related Potential Data,” NeuroImage, vol. 30, pp. 544-553, 2006.
[31] Y.-P. Wang, “Integration of Gene Expression and Gene Copy Number Variations with Independent Component Analysis,” Proc. IEEE Int'l Conf. Eng. Medicine and Biology Soc. (EMBS), pp. 5700-5703, 2008.
[32] W. Liebermeister, “Linear Modes of Gene Expression Determined by Independent Component Analysis,” Bioinformatics, vol. 18, pp. 51-60, 2002.
[33] A. Hyvärinen, “Independent Component Analysis: Algorithms and Applications,” Neural Networks, vol. 13, nos. 4/5, pp. 411-430, 2000.
[34] A.J. Bell and T.J. Sejnowski, “An Information Maximization Approach to Blind Separation and Blind Deconvolution,” Neural Computation, vol. 7, no. 6, pp. 1129-1159, 1995.
[35] A. Hyvärinen and E. Oja, “A Fast Fixed-Point Algorithm for Independent Component Analysis,” Neural Computation, vol. 9, no. 7, pp. 1483-1492, 1997.
[36] J.F. Cardoso and A. Souloumiac, “Blind Beamforming for Non-Gaussian Signals,” IEE Proc.-F, vol. 140, no. 6, pp. 362-370, 1993.
[37] J. Sheng, H.-W. Deng, V. Calhoun, and Y.-P. Wang, “Webpage: Integrated Analysis of Gene Expression and Copy Number Data on Gene Shaving Using Independent Component Analysis,” file-cabinet, 2011.
[38] P. Wang, Y. Kim, J. Pollack, B. Narasimhan, and R. Tibshirani, “A Method for Calling Gains and Losses in Array CGH Data,” Biostatistics, vol. 6, pp. 45-58, Jan. 2005.
[39] S. Attoor, E.R. Dougherty, Y. Chen, M.L. Bittner, and J.M. Trent, “Which is Better for cDNA-Microarray-Based Classification: Ratios or Direct Intensities,” Bioinformatics, vol. 20, pp. 2513-2520, Nov. 2004.
[40] O. Monni, M. Bärlund, S. Mousses, J. Kononen, G. Sauter, M. Heiskanen, P. Paavola, K. Avela, Y. Chen, M.L. Bittner, and A. Kallioniemi, “Comprehensive Copy Number and Gene Expression Profiling of the 17q23 Amplicon in Human Breast Cancer,” Proc. Nat'l Academy of Sciences USA, vol. 98, pp. 5711-5716, May. 2001.
[41] P. Kauraniemi, S. Hautaniemi, R. Autio, J. Astola, O. Monni, A. Elkahloun, A. Kallioniemi, “Effects of Herceptin Treatment on Global Gene Expression Patterns in HER2-Amplified and Non-Amplified Breast Cancer Cell Lines,” Oncogene, vol. 23, pp. 1010-1013, Jan. 2004.
[42] J.R. Pollack, T. Sørlie, C.M. Perou, C.A. Rees, S.S. Jeffrey, P.E. Lonning, R. Tibshirani, D. Botstein, A.L. Børresen-Dale, and P.O. Brown, “Microarray Analysis Reveals a Major Direct Role of DNA Copy Number Alteration in the Transcriptional Program of Human Breast Tumors,” Proc. Nat'l Academy of Sciences USA, vol. 99, pp. 12963-12968, 2002.
14 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool