CSDL Home IEEE/ACM Transactions on Computational Biology and Bioinformatics 2010 vol.7 Issue No.01 - January-March

Subscribe

Issue No.01 - January-March (2010 vol.7)

pp: 118-125

Theodore J. Perkins , McGill University, Montreal

Michael T. Hallett , McGill University, Montreal

DOI Bookmark: http://doi.ieeecomputersociety.org/10.1109/TCBB.2008.38

ABSTRACT

A key problem in molecular biology is to infer regulatory relationships between genes from expression data. This paper studies a simplified model of such inference problems in which one or more Boolean variables, modeling, for example, the expression levels of genes, each depend deterministically on a small but unknown subset of a large number of Boolean input variables. Our model assumes that the expression data comprises a time series, in which successive samples may be correlated. We provide bounds on the expected amount of data needed to infer the correct relationships between output and input variables. These bounds improve and generalize previous results for Boolean network inference and continuous-time switching network inference. Although the computational problem is intractable in general, we describe a fixed-parameter tractable algorithm that is guaranteed to provide at least a partial solution to the problem. Most interestingly, both the sample complexity and computational complexity of the problem depend on the strength of correlations between successive samples in the time series but in opposing ways. Uncorrelated samples minimize the total number of samples needed while maximizing computational complexity; a strong correlation between successive samples has the opposite effect. This observation has implications for the design of experiments for measuring gene expression.

INDEX TERMS

Machine learning, parameter learning, time-series analysis, feature extraction or construction, clustering, classification, association rules.

CITATION

Theodore J. Perkins, Michael T. Hallett, "A Trade-Off between Sample Complexity and Computational Complexity in Learning Boolean Networks from Time-Series Data",

*IEEE/ACM Transactions on Computational Biology and Bioinformatics*, vol.7, no. 1, pp. 118-125, January-March 2010, doi:10.1109/TCBB.2008.38REFERENCES