The Community for Technology Leaders
RSS Icon
Issue No.02 - April-June (2009 vol.6)
pp: 1
G.H. Weber , Lawrence Berkeley Nat. Lab., Berkeley, CA, USA
O. Rubel , Dept. of Comput. Sci., Univ. of Kaiserslautern, Kaiserslautern, Germany
A.H. DePace , Med. Sch., Dept. of Syst. Biol., Harvard Univ., Boston, MA, USA
C.C. Fowlkes , Dept. of Comput. Sci., Univ. of California, Irvine, CA, USA
S.V.E. Keranen , Lawrence Berkeley Nat. Lab., Berkeley, CA, USA
C.L. Luengo Hendriks , Centre for Image Anal., Uppsala Univ., Uppsala, Sweden
H. Hagen , Dept. of Comput. Sci., Univ. of Kaiserslautern, Kaiserslautern, Germany
D.W. Knowles , Lawrence Berkeley Nat. Lab., Berkeley, CA, USA
J. Malik , Comput. Sci. Div., Univ. of California, Berkeley, CA, USA
M.D. Biggin , Lawrence Berkeley Nat. Lab., Berkeley, CA, USA
B. Hamann , Dept. of Comput. Sci., Univ. of California, Davis, CA, USA
During animal development, complex patterns of gene expression provide positional information within the embryo. To better understand the underlying gene regulatory networks, the Berkeley Drosophila Transcription Network Project (BDTNP) has developed methods that support quantitative computational analysis of three-dimensional (3D) gene expression in early Drosophila embryos at cellular resolution. We introduce PointCloudXplore (PCX), an interactive visualization tool that supports visual exploration of relationships between different genes' expression using a combination of established visualization techniques. Two aspects of gene expression are of particular interest: 1) gene expression patterns defined by the spatial locations of cells expressing a gene and 2) relationships between the expression levels of multiple genes. PCX provides users with two corresponding classes of data views: 1) physical views based on the spatial relationships of cells in the embryo and 2) abstract views that discard spatial information and plot expression levels of multiple genes with respect to each other. Cell selectors highlight data associated with subsets of embryo cells within a View. Using linking, these selected cells can be viewed in multiple representations. We describe PCX as a 3D gene expression visualization tool and provide examples of how it has been used by BDTNP biologists to generate new hypotheses.
genetics, bioinformatics, cellular biophysics, embryo cells, three-dimensional gene expression, visual exploration, gene regulatory networks, Drosophila embryos, PointCloudXplore, visualization tool, Gene expression, Embryo, Data visualization, Computer science, Animals, Computer networks, Spatial resolution, Bioinformatics, Biology computing, Cellular networks, scatter plots., Interactive data exploration, three-dimensional gene expression, spatial expression patterns, information visualization, visualization, physical views, multiple linked views, brushing, Picture/Image Generation, General
G.H. Weber, O. Rubel, A.H. DePace, C.C. Fowlkes, S.V.E. Keranen, C.L. Luengo Hendriks, H. Hagen, D.W. Knowles, J. Malik, M.D. Biggin, B. Hamann, "Visual Exploration of Three-Dimensional Gene Expression Using Physical Views and Linked Abstract Views", IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.6, no. 2, pp. 1, April-June 2009, doi:10.1109/TCBB.2007.70249
[1] P.A. Lawrence, The Making of a Fly: The Genetics of Animal Design. Blackwell Publishing, Inc., 1992.
[2] C.L. Luengo Hendriks, S.V.E. Keränen, C.C. Fowlkes, L. Simirenko, G.H. Weber, A.H. DePace, C. Henriquez, D.W. Kaszuba, B. Hamann, M.B. Eisen, J. Malik, D. Sudar, M.D. Biggin, and D.W. Knowles, “Three-Dimensional Morphology and Gene Expression in the Drosophila Blastoderm at Cellular Resolution I: Data Acquisition Pipeline,” Genome Biology, vol. 7R124, 2006, doi:10.1186/gb-2006-7-12-r124.
[3] C.C. Fowlkes, C.L. Luengo Hendriks, S.V.E. Keränen, M.D. Biggin, D.W. Knowles, D. Sudar, and J. Malik, “Registering Drosophila Embryos at Cellular Resolution to Build a Quantitative 3D Map of Gene Expression Patterns and Morphology,” Proc. CSB Workshop BioImage Data Mining and Informatics, Aug. 2005.
[4] O. Rübel, G.H. Weber, S.V.E. Keränen, C.C. Fowlkes, C.L. Luengo Hendriks, L. Simirenko, N.Y. Shah, M.B. Eisen, M.D. Biggin, H. Hagen, D.W. Knowles, J. Malik, D. Sudar, and B. Hamann, “PointCloudXplore: Visual Analysis of 3D Gene Expression Data Using Physical Views and Parallel Coordinates,” Proc. Eurographics/IEEE-VGTC Symp. Visualization (EuroVis '06), B. Santos, T.Ertl, and K. Joy, eds., pp. 203-210, May 2006.
[5] S.V.E. Keränen, C.C. Fowlkes, C.L. Luengo Hendriks, D. Sudar, D.W. Knowles, J. Malik, and M.D. Biggin, “Three-Dimensional Morphology and Gene Expression in the Drosophila Blastoderm at Cellular Resolution II: Dynamics,” Genome Biology, vol. 7R124, 2006, doi:10.1186/gb-2006-7-12-r124.
[6] M.Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky, “Guidelines for Using Multiple Views in Information Visualization,” Proc. Working Conf. Advanced Visual Interfaces (AVI '00), pp. 110-119, 2000.
[7] C. Henze, “Feature Detection in Linked Derived Spaces,” Proc. Ninth IEEE Conf. Visualization (VIS '98), D. Ebert, H. Rushmeier, and H. Hagen, eds., pp. 87-94, 1998.
[8] D.L. Gresh, B.E. Rogowitz, R.L. Winslow, D.F. Scollan, and C.K. Yung, “WEAVE: A System for Visually Linking 3-D and Statistical Visualizations, Applied to Cardiac Simulation and Measurement Data,” Proc. 11th IEEE Conf. Visualization (VIS '00), T.Ertl, B.Hamann, and A. Varshney, eds., pp. 489-492, 2000.
[9] H. Doleisch, M. Gasser, and H. Hauser, “Interactive Feature Specification for Focus $+$ Context Visualization of Complex Simulation Data,” Proc. Fifth Joint Eurographics/IEEE TCVG Symp. Visualization (VisSym '03), G.-P. Bonneau, S. Hahmann, and C.D.Hansen, eds., 2003.
[10] H. Piringer, R. Kosara, and H. Hauser, “Interactive Focus $+$ Context Visualization with Linked 2D/3D Scatterplots,” Proc. Second Int'l Conf. Coordinated and Multiple Views in Exploratory Visualization (CMV '04), pp. 49-60, 2004.
[11] R. Kosara, G.N. Sahling, and H. Hauser, “Linking Scientific and Information Visualization with Interactive 3D Scatterplots,” Proc. 12th Int'l Conf. in Central Europe on Computer Graphics, Visualization, and Computer Vision (WSCG '04), short comm. papers, pp. 133-140, 2004.
[12] N. Shah, V. Filkov, B. Hamann, and K.I. Joy, “GeneBox: Interactive Visualization of Microarray Data Sets,” Proc. Int'l Conf. Math. and Eng. Techniques in Medicine and Biological Sciences (METMBS '03), F.Valafar and H. Valafar, eds., pp. 10-16, 2003.
[13] C.G. Healey, “Choosing Effective Colours for Data Visualization,” Proc. Seventh IEEE Conf. Visualization (VIS '96), pp. 263-271, 1996.
[14] C.G. Healey, “Combining Perception and Impressionist Techniques for Nonphotorealistic Visualization of Multidimensional Data,” Proc. ACM SIGGRAPH '01, Course 32: Nonphotorealistic Rendering in Scientific Visualization, pp. 20-52, 2001.
[15] J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes, Computer Graphics, Principles and Practice, chapter 19.5.2. Addison-Wesley, 1997.
[16] M.Z. Ludwig, N.H. Patel, and M. Kreitman, “Functional Analysis of Eve Stripe 2 Enhancer Evolution in Drosophila: Rules Governing Conservation and Change,” Development, vol. 125, no. 5, pp. 949-958, 1998.
[17] H. Janssens, S. Hou, J. Jaeger, A.-R. Kim, E. Myasnikova, D. Sharp, and J. Reinitz, “Quantitative and Predictive Model of Transcriptional Control of the Drosophila Melanogaster Even Skipped Gene,” Nature Genetics, vol. 38, no. 10, pp. 1159-1165, 2006.
16 ms
(Ver 2.0)

Marketing Automation Platform Marketing Automation Tool