The Community for Technology Leaders
Green Image
ISSN: 1939-1374
Lina Yao , Computer Science and Engineering, University of New South Wales, 7800 Sydney, New South Wales Australia (e-mail:
Xianzhi Wang , University of New South Wales, Sydney, New South Wales Australia (e-mail:
Quan Z. Sheng , Department of Computing, Macquarie University, 7788 Sydney, New South Wales Australia (e-mail:
Boualem Benatallah , UNSW, Sydney, New South Wales Australia (e-mail:
Chaoran Huang , University of New South Wales, Sydney, New South Wales Australia (e-mail:
Mashup is a dominant approach for building data-centric applications, especially mobile applications, in recent years. Since mashups are predominantly based on public data sources and existing APIs, it requires no sophisticated programming knowledge of people to develop mashup applications. The recent prevalence of open APIs and open data sources in the Big Data era has provided new opportunities for mashup development, but at the same time increase the difficulty of selecting the right services for a given mashup task. The API recommendation for mashup differs from traditional service recommendation tasks in lacking the specific QoS information and formal semantic specification of the APIs, which limits the adoption of many existing methods. Although there are a significant number of service recommendation approaches, most of them focus on improving the recommendation accuracy and few work pays attention to the diversity of the recommendation results. Another challenge comes from the existence of both explicit and implicit correlations among the different APIs generally neglected by existing recommendation methods. In this paper, we address the above deficiencies of existing approaches by exploring API recommendation for mashups in the reusable composition context, with the goal of helping developers identify the most appropriate APIs for composition task
Mashups, Correlation, Matrix decomposition, Quality of service, Task analysis, Google

L. Yao, X. Wang, Q. Z. Sheng, B. Benatallah and C. Huang, "Mashup Recommendation by Regularizing Matrix Factorization with API Co-Invocations," in IEEE Transactions on Services Computing.
94 ms
(Ver 3.3 (11022016))