The Community for Technology Leaders
Green Image
ISSN: 1939-1374
Michael Pantazoglou , National and Kapodistrian University of Athens, Ilisia
Ioannis Pogkas , National and Kapodistrian University of Athens, Ilisia
Aphrodite Tsalgatidou , National and Kapodistrian University of Athens, Ilisia
This article presents BPELcube, a framework comprising a scalable architecture and a set of distributed algorithms, which support the decentralized enactment of BPEL processes. In many application domains, BPEL processes are long-running, they involve the exchange of voluminous data with external Web services, and are concurrently accessed by large numbers of users. In such context, centralized BPEL process execution engines pose considerable limitations in terms of scalability and performance. To overcome such problems, a scalable hypercube peer-to-peer topology is employed by BPELcube in order to organize an arbitrary number of nodes, which can then collaborate in the decentralized execution and monitoring of BPEL processes. Contrary to traditional clustering approaches, each node does not fully take charge of executing the whole process; rather, it contributes to the overall process execution by running a subset of the process activities, and maintaining a subset of the process variables. Hence, the hypercube-based infrastructure acts as a single execution engine, where workload is evenly distributed among the participating nodes in a fine-grained manner. An experimental evaluation of BPELcube and a comparison with centralized and clustered BPEL engine architectures demonstrates that the decentralized approach yields improved process execution times and throughput.
Simulation of Business Processes, Composite Web Services, Processes, Business Process Management

M. Pantazoglou, I. Pogkas and A. Tsalgatidou, "Decentralized Enactment of BPEL Processes," in IEEE Transactions on Services Computing.
86 ms
(Ver 3.3 (11022016))