Guest Editorial: Special Section on Service-Oriented Distributed Computing Systems

Elisa Bertino, Fellow, IEEE, and William Cheng-Chung Chu

This special section contains the two papers selected from FTDCS 2008, the 12th International Workshop on Future Trends of Distributed Computing Systems, which was held in Kunming, China, October 2008. The papers, selected after a careful review process, address important issues related to software adaptation and evolvability in the context of service systems.

Recent developments in service-oriented computing and grid computing have led to the rapid adoption of Service-Oriented Architecture (SOA) in distributed computing systems. One of the most important advantages of SOA is the capability of enabling a rapid composition of services provided by various providers through networks for distributed applications and integration of the systems. In their paper, Yau et al. propose a performance-model-oriented approach to developing adaptive service-based software systems (SBS). This approach is based on establishing performance models for SBS through controlled experiments, and then developing QOS monitoring and adaptation modules based on the performance models and validating the adaptive SBS design through simulations.

Service evolvability is essential for computer systems to adapt to the dynamic and changing requirements in response to instant or delayed feedback from service environments that are becoming more and more context aware. Current context-aware service-centric models typically lack the capability of continuously exploring human intentions that often drive system evolution. To support a service requirements analysis of real-world applications for services computing, in their paper, Chang et al. propose a situation-theoretic approach to human-intention-driven service evolution in context-aware service environments. In their paper, they introduce a definition of situation which is rich in semantics and useful for modeling and reasoning human intentions, and a definition of intension which is based on the observations of situations. A computational framework is also proposed to model and infer human intentions. An inference process based on the Hidden Markov Model makes an instant definition of individualized services at runtime possible and significantly shortens the service evolution cycle.

The organization of this special section has been made possible by the work of many colleagues. We would like to thank the reviewers for their valuable feedback on the papers they reviewed and Dr. Liang-Jie (LJ) Zhang, Editor-in-Chief of IEEE Transactions on Service Computing, for all of his support.

Elisa Bertino
William Cheng-Chung Chu
Guest Editors

- E. Bertino is with the Computer Science Department, Purdue University, West Lafayette, IN 47907. E-mail: bertino@cs.purdue.edu.
- W. Cheng-Chung Chu is with the Computer Science Department, Tunghai University, Taichung, Taiwan. E-mail: cchu@thu.edu.tw.

For information on obtaining reprints of this article, please send e-mail to: tsc@computer.org.
Elisa Bertino is a professor of computer science at Purdue University and serves as research director of the Center for Education and Research in Information Assurance and Security (CERIAS). Previously, she was a faculty member in the Department of Computer Science and Communication at the University of Milan, where she directed the DB&SEC laboratory. She was a visiting researcher at the IBM Research Laboratory (now Almaden) in San Jose, at the Microelectronics and Computer Technology Corporation at Rutgers University, and at Telcordia Technologies. Her main research interests include security, privacy, digital identity management systems, database systems, distributed systems, and multimedia systems. In those areas, she has published more than 250 papers in all major refereed journals and in proceedings of international conferences and symposia. She is a coauthor of the books Object-Oriented Database Systems—Concepts and Architectures (Addison-Wesley International, 1993), Indexing Techniques for Advanced Database Systems (Kluwer Academic Publishers, 1997), Intelligent Database Systems (Addison-Wesley International, 2001), and Security for Web Services and Service Oriented Architectures (Springer, 2008). She was a co-editor-in-chief of the Very Large Database Systems (VLDB) Journal from 2001 to 2007. She serves (or has served) on the editorial boards of several scientific journals, including IEEE Internet Computing, IEEE Security & Privacy, the ACM Transactions on Information and System Security, the ACM Transactions on Web, Acta Informatica, and the Parallel and Distributed Database Journal. She has served as a program committee member of several international conferences, such as ACM SIGMOD, VLDB, and ACM OOPSLA, as the program cochair of the 1998 IEEE International Conference on Data Engineering (ICDE), and as the program chair of the 2000 European Conference on Object-Oriented Programming (ECOOP 2000), the Seventh ACM Symposium of Access Control Models and Technologies (SACMAT 2002), the EDBT 2004 Conference, and the IEEE Policy 2007 Workshop. She is a fellow of the IEEE and the ACM. She received the 2002 IEEE Computer Society Technical Achievement Award “for outstanding contributions to database systems and database security and advanced data management systems” and the 2005 IEEE Computer Society Tsutomu Kanai Award “for pioneering and innovative research contributions to secure distributed systems.”

William Cheng-Chung Chu received the MS and PhD degrees from Northwestern University in Evanston, Illinois, in 1987 and 1989, respectively, both in computer science. He is the dean of the Engineering College, a professor in the Department of Computer Science, and the director of the Software Engineering and Technologies Center of Tunghai University, Taiwan. He served as the dean of the Research and Development Office at Tunghai University from 2004 to 2007. From 1994 to 1996, he was an associate professor in the Department of Information Engineering and Computer Science at Feng Chia University. He was a research scientist at the Software Technology Center of the Lockheed Missiles and Space Company, Inc., where he received special contribution awards in both 1992 and 1993 and a PIP award in 1993. In 1992, he was also a visiting scholar at Stanford University. He currently serves as an associate editor for the Journal of Software Maintenance and Evolution (JSME) and the Journal of Systems and Software (JSS). His current research interests include software engineering, embedded systems, and e-learning. He has edited several books and published more than 100 refereed papers and book chapters, and has participated in many international activities, including organizing international conferences.