The Community for Technology Leaders
Green Image
Issue No. 04 - Fourth Quarter (2012 vol. 5)
ISSN: 1939-1382
pp: 304-317
S. K. D'Mello , Depts. of Comput. Sci. & Psychol., Univ. of Notre Dame, Notre Dame, IN, USA
A. Graesser , Dept. of Psychol., Univ. of Memphis, Memphis, TN, USA
We explored the possibility of predicting student emotions (boredom, flow/engagement, confusion, and frustration) by analyzing the text of student and tutor dialogues during interactions with an Intelligent Tutoring System (ITS) with conversational dialogues. After completing a learning session with the tutor, student emotions were judged by the students themselves (self-judgments), untrained peers, and trained judges. Transcripts from the tutorial dialogues were analyzed with four methods that included 1) identifying direct expressions of affect, 2) aligning the semantic content of student responses to affective terms, 3) identifying psychological and linguistic terms that are predictive of affect, and 4) assessing cohesion relationships that might reveal student affect. Models constructed by regressing the proportional occurrence of each emotion on textual features derived from these methods yielded large effects (R2 = 38%) for the psychological, linguistic, and cohesion-based methods, but not the direct expression and semantic alignment methods. We discuss the theoretical, methodological, and applied implications of our findings toward text-based emotion detection during tutoring.
Semantics, Education, Pragmatics, Natural language processing, Psychology, Feature extraction, Particle measurements, Emotion recognition, Behavioral science

S. K. D'Mello and A. Graesser, "Language and Discourse Are Powerful Signals of Student Emotions during Tutoring," in IEEE Transactions on Learning Technologies, vol. 5, no. 4, pp. 304-317, 2013.
90 ms
(Ver 3.3 (11022016))