Guest Editorial: Special Issue on Emerging Trends in Education – Part II

PHILLIP A. LAPLANTE, CLAUDIO DEMARTINI, FABRIZIO LAMBERTI, AND COLIN J. NEILL

The first eight papers accepted for the Special Issue on “Emerging Trends in Education” were published previously [1]. Here, we introduce the remaining eight papers, which cover quite a varied set of topics, encompassing online education, adaptive learning, student modeling and analytics, as well as gamification.

For example, in “FORGE toolkit: leveraging distributed systems in eLearning platforms” Guillaume Jourjon et al. explore technologies supporting online education. The focus is on the creation of a distributed architecture meant to support large-scale laboratory activities by leveraging experimentation facilities deployed in international initiatives for the development of e-learning resources. In particular, the authors present the design of an ecosystem based on configurable widgets that can be exploited in the e-book authoring process to enable the integration of tools designed for producing teaching and educational materials with services offered by experimentation facilities. The authors tested the proposed framework in the context of network and communication courses offered by both academic and industrial institutions worldwide.

In “Tutorials in eLearning: How presentation affects outcomes”, Leana Copeland and Tom Gedeon present a possible application of an emerging human-computer interaction technology like eye tracking in the context of education. More specifically, their goal is to study how different sequences of text and test questions could influence performance in terms of understanding and, ultimately, of learning effectiveness for English language readers. According to the authors, results obtained could be exploited to guide the design of learning materials capable to adapt to users’ behavior.

In “Open student models of core competencies at the curriculum level: Using learning analytics for student reflection” Chih-Yueh Chou et al. analyzed the quantity and quality of courses and associated grades to estimate the proficiency level of core competences. Course-competency diagnostic tools, course work performance radar charts and peer-based ranking tables are proposed as a means to enable student reflection by promoting awareness, self-assessment, learning autonomy, planning and positive group interactions.

In “Identifying at-risk students for early interventions: A time-series clustering approach” by Jui-Long Hung et al., the authors apply a clustering approach over disaggregated time series data from the logs of a LMS regarding frequency of course material access, frequency of forum reads, number of discussions posted, number of replies posted, demographic information, and student grades to generate more accurate predictions about at-risk students. Experimental results demonstrate that, compared to alternative methods working on aggregate data, the proposed approach supports earlier detection, which allows online instructors to develop suitable interventions via course design or student-teacher interactions.

In “Similarity-based grouping to support teachers on collaborative activities in exploratory learning environments” by Sergio Gutierrez-Santosa et al., the focus is shifted primarily on teachers. The authors propose a tool that is meant to help teachers cope with pragmatic and logistic constraints that are typical of collaborative learning scenarios in a physical class context. The tool supports the formation of groups capable of enacting a profitable learning experience where students engage in productive discussions and reflect on their approaches to a given problem by justifying and critiquing proposed solutions. The designed tool has been tested with young students working with a mathematical learning system designed to develop their algebraic ways of thinking by identifying relationships in figural patterns. The tool first compares approaches towards the solution, in order to identify complementary students. Then, it forms pairs of students by using a heuristic aimed to minimize similarity between approaches for the whole class. Experimental tests showed that the proposed approach can reduce the time needed for performing the allocation, by producing groups that are in line with teachers’ own expectation of good pairing.

Related to the topic of group formation, is the relationship between group structure and educational effectiveness. This is explored in “Relation between combination of personal characteristic types and educational effectiveness for controlled project-based learning” by Yusuke Sunaga et al., where a study of the impact of students’ personalities on the knowledge and skills acquired when working on a learning
team is reported. In particular, the authors use a standard scale for classifying students in four categories, i.e., leadership, tugboat, management, and anchor based on their attitudes to be receptive, condensable, preservative, diffusible, and discriminative. Experimental results allowed them to identify personalities capable to enhance group effectiveness.

Given the increasing role that game-based learning is expected to play in the coming years, in the paper titled “Mapping learning and game mechanics for serious games analysis in engineering education” by Michael Callaghan et al. the focus is on studying suitable strategies to be adopted in the game design phases to ensure a correct balance between gameplay and learning effectiveness. By considering a concrete case study represented by a course on advanced electronics and electrical circuits theory, the authors studied how to create a serious game with a solid pedagogical grounding aimed to ensure a high degree of engagement though competitive play elements and enabling analytics features to support the collection of measurement about playability and retention.

The last paper, “Design and implementation of location-based learning games: Four case studies”, deals again with game-based learning. In this paper, Javier Melero and Davinia Hernández-Leo address the problem of creating or adapting educational games to teachers’ requirements depending on the particular learning scenario. In particular, they propose a metaphor based on puzzle board elements for developing location-based education games that exploit pervasive mobile technologies to enable contextualized learning in non-formal learning situations.

The richness and diverseness of the papers submitted to this Special Issue confirm the primary role that computing technologies are expected to play in the context of education in the coming years. The hope is that reported experiences will inspire ever more researchers who are actively working in this field and will contribute to further development of the considered domain.

Once again, we thank both the authors and the reviewers for their great contribution. We also wish to thank the Editor-in-Chief, Prof. Fabrizio Lombardi for providing us with the opportunity to guest-edit this Special Issue and for the help he offered throughout the whole publication process.

Phillip A. Laplante, Penn State University, USA
Claudio Demartini, Politecnico di Torino, Italy
Fabrizio Lamberti, Politecnico di Torino, Italy
Colin J. Neill, Penn State University, USA

REFERENCES


PHILLIP A. LAPLANTE (M’86–SM’90–F’08) received the BS degree in systems planning and management, the MEng degree in electrical engineering, and the PhD degree in computer science from the Stevens Institute of Technology, Hoboken, New Jersey, in 1983, 1986, and 1990, respectively, and the MBA degree from the University of Colorado, Colorado Springs, in 1999. He is currently a professor of software and systems engineering with Pennsylvania State University, Malvern, and has served on numerous boards and committees of the Computer Society and IEEE.

CLAUDIO DEMARTINI (M’02–SM’13) received the PhD degree from the Politecnico di Torino, Italy. He is currently a professor with the Department of Control and Computer Engineering, Politecnico di Torino, where he teaches information systems and innovation and product development. His research interests are in the areas of software engineering, distributed architectures and Web semantics. He is a member of the Academic Senate with the Politecnico di Torino, the Chair with the Department of Control and Computer Engineering, and a Consultant on vocational education and training for the Ministry of University, Research and Education. He is an editor of the IEEE IT Professional and a senior member of the IEEE Computer Society.

FABRIZIO LAMBERTI (M’02–SM’13) received the MSc and PhD degrees in computer engineering from the Politecnico di Torino, Italy, in 2000 and 2005, respectively. He is currently an assistant professor in the Department of Control and Computer Engineering, Politecnico di Torino. He has authored more than 120 papers in international books, journals, and conferences in the areas of learning technologies, computer graphics, human–computer interaction, mobile computing, digital arithmetic, and knowledge and data engineering. He is a senior member of the IEEE Computer Society and a member of the IEEE Computer Society Technical Committee on Visualization and Graphics. He is a member of the Editorial Advisory Board of several international journals and the Taylor & Francis’s Encyclopedia of Computer Science and Technology, and has been a co-guest editor for various Special Issues. He has served as the General co-chair and TPC chair of the 7th International Conference on Intelligent Technologies for Interactive Entertainment, and has been involved in the TPCs and review activities of other national and international conferences. He is currently an associate editor of the IEEE Transactions on Emerging Topics in Computing and the IEEE Consumer Electronics Magazine. He serves as the Secretary/Treasurer of the IEEE Computer Society, Italy Chapter.

COLIN J. NEILL (M’01–SM’04) received the BEng, MSc, and PhD degrees from the University of Wales Swansea. He is currently an associate professor of software engineering and systems engineering and the director of Engineering Programs with the School of Graduate Professional Studies, Penn State University. He has authored more than 70 articles in refereed journals and conference proceedings, including Systems Engineering, Computer, the Journal of Systems and Software, Software Process: Improvement and Practice, the IEEE Systems, and the IEEE Software. He serves as an associate editor of Innovations in Systems and Software Engineering and as an editorial board member of the International Journal of Systems and Software Engineering.