The Community for Technology Leaders
Green Image
Issue No. 01 - March (2014 vol. 2)
ISSN: 2168-6750
pp: 81-93
Nektarios Georgios Tsoutsos , Department of Computer Science and Engineering, New York University Polytechnic School of Engineering, Brooklyn, NY, USA
Michail Maniatakos , Department of Electrical and Computer Engineering, New York University Abu Dhabi, Abu Dhabi, UAE
The wide deployment of general purpose and embedded microprocessors has emphasized the need for defenses against cyber-attacks. Due to the globalized supply chain, however, there are several stages where a processor can be maliciously modified. The most promising stage, and the hardest during which to inject the hardware trojan, is the fabrication stage. As modern microprocessor chips are characterized by very dense, billion-transistor designs, such attacks must be very carefully crafted. In this paper, we demonstrate zero overhead malicious modifications on both high-performance and embedded microprocessors. These hardware trojans enable privilege escalation through execution of an instruction stream that excites the necessary conditions to make the modification appear. The minimal footprint, however, comes at the cost of a small window of attack opportunities. Experimental results show that malicious users can gain escalated privileges within a few million clock cycles. In addition, no system crashes were reported during normal operation, rendering the modifications transparent to the end user.
Microprocessors, Trojan horses, Fabrication, Hardware, Embedded systems, Logic gates, Computer architecture

N. G. Tsoutsos and M. Maniatakos, "Fabrication Attacks: Zero-Overhead Malicious Modifications Enabling Modern Microprocessor Privilege Escalation," in IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 1, pp. 81-93, 2014.
269 ms
(Ver 3.3 (11022016))