The Community for Technology Leaders
2009 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (2009)
Marrakech, Morocco
Oct. 12, 2009 to Oct. 14, 2009
ISBN: 978-0-7695-3841-9
pp: 471-475
Clustering has become a crucial operation in Wireless Sensor Networks (WSNs). Affinity Propagation (AP) is a relatively new clustering technique that has been shown to possess several advantages over long-standing algorithms such as K-means, particularly in terms of quality of clustering and multi-criteria support. However, the original AP algorithm is computationally intensive making it unsuitable for clustering in WSNs. A hierarchical decentralized variation of AP (Hi-WAP) has been recently proposed to reduce the processing cost of AP while minimizing the potentially negative effect of distribution (due to the lack of a global view) on clustering quality. In this paper, we explore the suitability of Hi-WAP for clustering in WSNs. We employ the level of distortion and the processing time as evaluation metrics. We propose an extension to Hi-WAP, termed LAP; Location-aware Affinity Propagation, where clustering is performed while being cognizant of nodes’ locations. Simulation results reveal that LAP, in general, outperforms Hi-WAP. We further study the optimization of LAP parameter values with the objective of minimizing processing time while maintaining a desirable low level of distortion.
distributed clustering, affinity propagation, wireless sensor networks

M. ElGammal and M. Eltoweissy, "Location-Aware Affinity Propagation Clustering in Wireless Sensor Networks," 2009 IEEE International Conference on Wireless and Mobile Computing, Networking and Communications(WIMOB), Marrakech, Morocco, 2009, pp. 471-475.
89 ms
(Ver 3.3 (11022016))