The Community for Technology Leaders
2015 IEEE Winter Conference on Applications of Computer Vision (WACV) (2015)
Waikoloa, HI, USA
Jan. 5, 2015 to Jan. 9, 2015
ISBN: 978-1-4799-6683-7
pp: 550-557
ABSTRACT
Geographic location is a powerful property for organizing large-scale photo collections, but only a small fraction of online photos are geo-tagged. Most work in automatically estimating geo-tags from image content is based on comparison against models of buildings or landmarks, or on matching to large reference collections of geotagged images. These approaches work well for frequently photographed places like major cities and tourist destinations, but fail for photos taken in sparsely photographed places where few reference photos exist. Here we consider how to recognize general geo-informative attributes of a photo, e.g. the elevation gradient, population density, demographics, etc. of where it was taken, instead of trying to estimate a precise geo-tag. We learn models for these attributes using a large (noisy) set of geo-tagged images from Flickr by training deep convolutional neural networks (CNNs). We evaluate on over a dozen attributes, showing that while automatically recognizing some attributes is very difficult, others can be automatically estimated with about the same accuracy as a human.
INDEX TERMS
Sociology, Statistics, Training, NASA, Economic indicators, Neural networks, Geospatial analysis
CITATION

S. Lee, H. Zhang and D. J. Crandall, "Predicting Geo-informative Attributes in Large-Scale Image Collections Using Convolutional Neural Networks," 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 2015, pp. 550-557.
doi:10.1109/WACV.2015.79
81 ms
(Ver 3.3 (11022016))