The Community for Technology Leaders
2017 IEEE Virtual Reality (VR) (2017)
Los Angeles, CA, USA
March 18, 2017 to March 22, 2017
ISSN: 2375-5334
ISBN: 978-1-5090-6648-3
pp: 223-224
Norimasa Kobori , Toyota Motor Corporation
Daisuke Deguchi , Nagoya University
Ichiro Ide , Nagoya University
Hiroshi Murase , Nagoya University
ABSTRACT
We propose a novel marker for robot's grasping task which has the following three aspects: (i) it is easy-to-find in a cluttered background, (ii) it is calculable for its posture (iii) its size is compact. The proposed marker is composed of a random dots pattern, and uses keypoint detection and a scale estimation by Spectral SIFT for dots detection and data decoding. The data is encoded by the scale size of dots, and the same dots in the marker work for both marker detection and data decoding. As a result, the proposed marker size can be compact. We confirmed the effectiveness of the proposed marker through experiments.
INDEX TERMS
Decoding, Image edge detection, Estimation, Cameras, Noise reduction, Robots, Electronic mail
CITATION

N. Kobori, D. Deguchi, I. Ide and H. Murase, "Proposal of a spectral random dots marker using local feature for posture estimation," 2017 IEEE Virtual Reality (VR), Los Angeles, CA, USA, 2017, pp. 223-224.
doi:10.1109/VR.2017.7892257
84 ms
(Ver 3.3 (11022016))